微软透露,正在尝试一种所谓的“两相浸入式冷却技术”,使用一种在极低温度下沸腾的液体来保持数据中心的冷却。
微软今天在Innovation博客上发表的一篇帖子中这样解释说,已经在位于美国华盛顿州昆西的Azure数据中心采用了这种技术。
目前,微软主要是依靠空气冷却系统让数据中心内运行的处理器的温度保持在可控范围内。但微软表示,基于液体的冷却系统能耗更低,因此具有更大的潜力,液体中传热“比空气中传热效率高几个数量级”,这就意味着液冷系统要更加环保。
据悉,这种两相浸入式冷却技术比谷歌在其数据中心内采用的单相冷却技术更为有效。微软称,单相冷却是让流体保持液态,通过自然对流或者强制对流带走热量。因此,单相浸入式冷却和空气冷却的方式类似,热流体在循环回系统之前会先通过一个热交换器。
微软表示,自己的两相浸入式冷却是一种更被动的方式。当系统中使用的流体与数据中心内部的发热组件接触时,会从液体变为自然上升的蒸汽,将热量作为一种潜能运走。蒸汽通过冷凝器排出热量,然后转化回液态,循环到系统中。
为此,微软开发了一套工程解决方案,使得服务器系统沉浸其中的时候不会对其造成损坏。流体是位于钢制冷却罐中,沸点仅为122华氏度,比水的沸点低约90度。同时,连接管穿过箱体、将蒸汽冷凝的液体导流到一个单独的闭环系统,流体将热量从水箱传递到位于外部的干式冷却器。
目前,微软仅部署了一个罐体,计划做一系列测试检查这一新冷却系统的实用性。
微软表示,到目前为止测试表明,这种两相浸入式冷却系统可以将任何服务器的功耗降低5%至15%。服务器甚至可以超频、或者以更高功率运行,没有任何过热的风险。
微软杰出工程师Christian Belady表示:“超级计算使用这种冷却技术有数十年时间了,因此风险不会那么高。我们的目标是将其部署到所有数据中心,但是在此之前还有很多工作要做。”
Beladay指出,除了更有效地传热之外,这种技术还有其他好处。因为系统去除了环境中的湿气和氧气,所以大大降低了腐蚀性,从而减少了系统中的机械故障。微软最早通过Project Natick(实验性海底数据中心项目)发现了这一点。
他说:“浸入式技术也有类似的好处,基本上你是在置换氧气和水分。”
微软还将继续其他液冷技术的试验,其中包括使用填充有液态制冷剂管道的所谓“冷板”。 Belady表示,两种技术都有潜力,两相浸入式技术令他感到非常兴奋是因为这只需要一次性成本,只需要实施一次,而在服务器迭代时无需进行任何工程设计。
“如果采取措施得当,两相浸入式冷却系统将同时满足我们所有成本、可靠性和性能方面的要求,能源消耗几乎是空气冷却的一个零头,”微软Azure首席软件工程师Ioannis Manousakis这样说道。
好文章,需要你的鼓励
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
微软正式确认配置管理器将转为年度发布模式,并将Intune作为主要创新重点。该变化将于2026年秋季生效,在此之前还有几个版本发布。微软表示此举是为了与Windows客户端安全和稳定性节奏保持一致,优先确保安全可靠的用户体验。配置管理器将专注于安全性、稳定性和长期支持,而所有新功能创新都将在云端的Intune中进行。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。