尽管投入大量资源,但仅有不足半数AI模型能够投入生产。为了摸清造成这种窘境的原因,Run:AI委托开展了首轮AI基础设施现状调查。本次调查面向来自十个国家的211名数据科学家、AI/机器学习/IT从业者及系统架构师,他们主要来自员工超过5000人的规模企业,但也包括部分来自初创企业和超大型跨国集团。
统计数据也证实了这一基本判断:77%的受访者表示他们的大部分AI模型从未投入过正式使用;甚至有五分之一的受访者给出了更低的答案,称全部模型中只有10%能够介入生产环境。
报告中的其他发现则给出了具体解释。例如,只有17%的AI厂商能够对昂贵的AI资源进行高效利用;22%的AI解决方案开发者表示,他们的基础设施大多处于闲置状态,这是因为超过三分之一的受访者需要手动访问GPU资源,而且硬件加速器的静态分配机制也严重限制了他们的工作效率。
AI领域已经吸纳了巨量成本:38%的受访者表示所在公司单单在AI基础设施,包括硬件、软件与云开销方面就开出了超过100万美元的年度预算;更有15%的受访者表示所在公司的年度AI基础设施投入超过1000万美元。还有74%的受访者称公司计划在短期之内增加GPU容量或AI基础设施支出。
调查发现,AI工作者们面临的最大挑战集中在数据层面。61%的受访者表示数据收集、数据清洗与治理等环节存在问题。42%的受访者强调所在公司的AI基础设施与算力水平达不到要求。除开数据与基础设施这两大核心要素,紧随其后的挑战为模型开发及训练时间过长、模型引用量过大,占受访者中的24%。
调查还强调了云计算在AI领域的作用,53%的受访者表示他们的AI应用程序及基础设施位于云端,34%受访者表示计划在未来几年向云端迁移。容器已经成为运行AI工作负载的标准基础设施选项,80%的受访者表示他们已经在某些AI工作负载中使用容器技术,49%的受访者表示他们的大部分乃至全部AI负载都运行在容器之内。在编排方面,Kubernetes一马当先、获得42%的支持率,另有16%的受访者表示计划使用这套流行的容器编排解决方案。紧随其后的是Red Hat Openshift,有13%的用户正在使用、6%的受访者有意试用。
Run:AI公司联合创始人兼CEO Omri Geller表示,“除了基础设施层面的数百万美元投入之外,对AI抱有兴趣的企业还需要再准备几百万美元招纳高水平的AI员工。但很遗憾,大部分AI模型从未被投入实际生产,意味着这些投入白白打了水漂。我们的调查显示,大量基础设施处于闲置状态、引发严重的资源浪费;数据科学家被迫手动访问GPU资源;而且云迁移之旅也仍在推进当中。总之,谁能率先把自己的模型投入生产并获得实效,谁就能在这场AI竞赛当中占据领先。”
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。