重型设备制造商小松在Cloudera 和微软助力下实现了工业物联网分析平台
重型设备制造商小松(Komatsu)实施了一款以Cloudera 产品和微软Azure作为支撑的工业物联网分析平台,以帮助全球采矿企业监控行业中使用的巨型设备的性能。该平台还能提高资产利用率和生产率,为全球经济提供必要的资源(包括能源和工业矿产)。
小松的JoySmart解决方案是为了帮助客户利用机器数据和分析来优化机器性能。它摄取、存储和处理从世界各地的采矿设备收集到的多种数据,每台机器每分钟可以产生3万到5万条带有时间戳的记录。
“随着客户需求的增加和联网机器的增多,我们预计数据量将达到每月30TB。以前的环境限制了我们的规模、增长和创新能力,”小松公司分析部高级经理Anthony Reid说。
“借助Cloudera的全新平台,我们使用先进的数据分析和机器学习来推动我们在工业物联网方面的成功。我们现在为客户提供更好的机器使用建议,并更快地提供服务。例如,我们能够为一家大型煤矿公司提供建议,使他们的Joy长壁开采系统的日利用率增加一倍。
“通过在微软Azure上部署Cloudera 平台,我们的团队将不可见的数据变为可见,获得有价值的洞察,帮助客户优化生产率和挖掘效率。Cloudera提供了快速的性能、数据安全和客户支持,使我们的团队能够访问机器数据分析,并与世界各地的不同用户群体合作。”
小松需要一个现代化的数据平台,不仅要在云计算中提供下一代机器学习和先进的分析能力,而且要具有可扩展性,以提高客户的设备利用率和生产率。有了Cloudera,小松现在可以利用大量的数据,帮助矿业客户应对日益增长的压力,以更低的运营成本实现更智能的环保和更高的生产率。
好文章,需要你的鼓励
Salesforce研究团队发布开源工具包MCPEval,基于模型上下文协议(MCP)架构评估AI智能体工具使用性能。该工具突破传统静态测试局限,通过全自动化流程收集详细任务轨迹和协议交互数据,为智能体行为提供前所未有的可视化分析。MCPEval能快速评估MCP工具和服务器,生成综合评估报告,为企业智能体部署提供可操作的改进建议。
清华大学团队推出AnyCap项目,通过轻量级"即插即用"框架解决多模态AI字幕生成缺乏个性化控制的问题。该项目包含模型、数据集和评估基准,能让现有AI系统根据用户需求生成定制化字幕,在不重训基础模型的情况下显著提升控制能力,为AI内容创作的个性化发展奠定基础。
月之暗面Kimi K2技术报告:解读万亿参数的智能体模型(含K2与DeepSeek R1对比)
耶鲁大学团队开发了全球首个AI科学实验设计评估系统ABGEN,测试了18个先进AI模型设计消融实验的能力。研究发现最好的AI系统得分4.11分,仍低于人类专家的4.80分,但在人机协作模式下表现显著改善。研究还发现现有自动评估系统可靠性不足,建立了元评估基准ABGEN-EVAL。这项研究为AI在科学研究中的应用提供了重要评估框架。