重型设备制造商小松在Cloudera 和微软助力下实现了工业物联网分析平台
重型设备制造商小松(Komatsu)实施了一款以Cloudera 产品和微软Azure作为支撑的工业物联网分析平台,以帮助全球采矿企业监控行业中使用的巨型设备的性能。该平台还能提高资产利用率和生产率,为全球经济提供必要的资源(包括能源和工业矿产)。
小松的JoySmart解决方案是为了帮助客户利用机器数据和分析来优化机器性能。它摄取、存储和处理从世界各地的采矿设备收集到的多种数据,每台机器每分钟可以产生3万到5万条带有时间戳的记录。
“随着客户需求的增加和联网机器的增多,我们预计数据量将达到每月30TB。以前的环境限制了我们的规模、增长和创新能力,”小松公司分析部高级经理Anthony Reid说。
“借助Cloudera的全新平台,我们使用先进的数据分析和机器学习来推动我们在工业物联网方面的成功。我们现在为客户提供更好的机器使用建议,并更快地提供服务。例如,我们能够为一家大型煤矿公司提供建议,使他们的Joy长壁开采系统的日利用率增加一倍。
“通过在微软Azure上部署Cloudera 平台,我们的团队将不可见的数据变为可见,获得有价值的洞察,帮助客户优化生产率和挖掘效率。Cloudera提供了快速的性能、数据安全和客户支持,使我们的团队能够访问机器数据分析,并与世界各地的不同用户群体合作。”
小松需要一个现代化的数据平台,不仅要在云计算中提供下一代机器学习和先进的分析能力,而且要具有可扩展性,以提高客户的设备利用率和生产率。有了Cloudera,小松现在可以利用大量的数据,帮助矿业客户应对日益增长的压力,以更低的运营成本实现更智能的环保和更高的生产率。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。