重型设备制造商小松在Cloudera 和微软助力下实现了工业物联网分析平台
重型设备制造商小松(Komatsu)实施了一款以Cloudera 产品和微软Azure作为支撑的工业物联网分析平台,以帮助全球采矿企业监控行业中使用的巨型设备的性能。该平台还能提高资产利用率和生产率,为全球经济提供必要的资源(包括能源和工业矿产)。
小松的JoySmart解决方案是为了帮助客户利用机器数据和分析来优化机器性能。它摄取、存储和处理从世界各地的采矿设备收集到的多种数据,每台机器每分钟可以产生3万到5万条带有时间戳的记录。
“随着客户需求的增加和联网机器的增多,我们预计数据量将达到每月30TB。以前的环境限制了我们的规模、增长和创新能力,”小松公司分析部高级经理Anthony Reid说。
“借助Cloudera的全新平台,我们使用先进的数据分析和机器学习来推动我们在工业物联网方面的成功。我们现在为客户提供更好的机器使用建议,并更快地提供服务。例如,我们能够为一家大型煤矿公司提供建议,使他们的Joy长壁开采系统的日利用率增加一倍。
“通过在微软Azure上部署Cloudera 平台,我们的团队将不可见的数据变为可见,获得有价值的洞察,帮助客户优化生产率和挖掘效率。Cloudera提供了快速的性能、数据安全和客户支持,使我们的团队能够访问机器数据分析,并与世界各地的不同用户群体合作。”
小松需要一个现代化的数据平台,不仅要在云计算中提供下一代机器学习和先进的分析能力,而且要具有可扩展性,以提高客户的设备利用率和生产率。有了Cloudera,小松现在可以利用大量的数据,帮助矿业客户应对日益增长的压力,以更低的运营成本实现更智能的环保和更高的生产率。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。