北京-2022年 3 月 15 日——软件智能公司 Dynatrace(纽交所代码:DT)日前公布了一项针对 1,300 位参与基础设施管理的首席信息官和资深 IT 从业者所做的全球性独立调查的结果。此次调查揭示了为打造与数字化转型步调一致所需的敏捷性和可伸缩性,组织在转向多重云架构的过程中所面临的种种挑战。多重云战略导致复杂性骤增,与此同时,基础设施团队在设法监测、管理其瞬息万变的环境时为数据所困。因此,团队在日常工作上花费的时间越来越多,这既限制了他们加快创新的能力,也凸显出应用人工智能和自动化技术的必要性。
此次调查揭示出:
Dynatrace 创始人兼首席技术官 Bernd Greifeneder 指出:“为了能与数字化转型日益加快的步伐保持一致,多重云战略已成为关键,而团队却被这些环境所带来的复杂性搞得焦头烂额。有增无减的部署频次、瞬息万变的云原生架构带动依赖关系数量呈指数式增长。开源技术进一步增加了需要由团队处理的数据,这使得情况更加复杂化。雪上加霜的是,每一种云服务或平台都有自己的监测解决方案。为建立起系统全貌,团队只得从各种解决方案中手动提取分析结果,然后与来自其他仪表板的数据拼凑在一起。组织必须找到某种方法来帮助这些团队减少花费在手动工作上的时间,让他们能够重新专注于战略性工作,从而为客户提供新颖、优质的服务。”
该报告的其他调查结果包括:
Greifeneder 继续说:“基础设施团队需要人工智能驱动的解决方案,以便让他们的日常手动工作最大限度地实现自动化。借助自动化、持续发现和插装技术,团队不仅能减少手动工作量,还能保持涵盖其混合多重云环境的端到端可观测能力。但只具备可观测能力还远远不够,还必须能获取精准解答以帮助团队卓有成效地优化其环境。而传统方式严重依赖手工操作,无法做到与时俱进。组织需要通过集人工智能、自动化及端到端可观测能力于一身的智能化方式将团队解脱出来,让他们把主要精力放在加快创新和优化用户体验上。”
这份报告基于一项针对大型企业(员工人数超过 1,000 人)参与基础设施管理的 1,300 位首席信息官和资深 IT 从业者所做的全球性调查,由 Dynatrace 委托 Coleman Parkes 完成。受访者样本包括美国 200 人、拉丁美洲 100 人、欧洲 600 人、亚太地区 250 人、中东地区 150 人。
好文章,需要你的鼓励
Meta宣布为Facebook Dating推出AI聊天机器人助手,帮助用户找到更匹配的对象。该AI可根据用户需求推荐特定类型的匹配者,并协助优化个人资料。同时推出Meet Cute功能,每周提供算法选择的"惊喜匹配"。尽管18-29岁用户匹配数同比增长10%,但相比Tinder的5000万日活用户仍有差距。AI功能已成为约会应用标配,Match Group等竞争对手也在大力投资AI技术。
字节跳动团队提出RewardDance框架,首次系统性解决视觉生成中的奖励模型扩展问题。该框架通过将奖励预测转为生成式任务,并将模型规模扩展至260亿参数,同时集成任务指令、参考样例和推理能力,有效解决了"奖励作弊"问题。实验显示,在文本生成图像任务中质量提升10.7分,视频生成性能改善49%,达到行业领先水平,为AI视觉创作提供了更强大可靠的技术基础。
Neo4j认为已找到让生成式AI访问图数据库记录的方法。图数据库专注于数据点之间的关系建模和查询,在欺诈检测、推荐引擎等场景中表现出色。2024年4月,ISO批准了图查询语言GQL标准,Neo4j的Cypher查询语言完全符合该标准。现代工具提供拖拽式工作流程,GenAI可作为自然语言接口,将用户请求转换为Cypher查询。
ByteDance团队开发的Mini-o3系统通过深度多轮推理突破了传统AI视觉理解的局限。该系统能像人类侦探般进行几十轮的视觉探索,在困难的视觉搜索任务上准确率达48%,相比现有模型提升显著。核心创新包括挑战性的Visual Probe数据集、多样化推理策略训练和突破性的过轮掩码技术,实现了测试时思考轮数的自然扩展。