据知名组织对全球超过1500名专业IT从业者的调研显示:在IT运维管理团队TOP关注与挑战中,运维效率如何提升以及如何减少用户抱怨与投诉仍占据了75%;而在与工具相关的TOP关注与挑战中,如何整合多工具与打通数据,以及如何减少无效告警、尽快确定故障原因仍占据了78%。新时代的网络运维人似乎仍难以摆脱“背锅侠”和“救火队”的悲情角色。
4月13日,ICT基础设施及行业解决方案提供商锐捷网络以“先见先行,乐享其成”为主题举办发布会,正式发布锐捷乐享智能运维管理平台,该平台可通过“为执行赋能”、“为管理赋知”、“为决策赋见”,致力于让IT运维管理变得更加轻松。
锐捷乐享 惊艳亮相
会上,锐捷网络睿智产品事业部产品总监骆杰先生表示:“网络问题无法即时发现、定位及解决问题耗时耗力、同样问题重复出现,正让网络运维工作面临艰巨的挑战。”
锐捷网络以客户需求为驱动,深耕用户IT运维场景,本次推出的锐捷乐享智能运维管理平台直指上述运维场景痛点,将助力企业构建“先见先行”的运维数据洞察能力,并打造“以用户体验为核心”的业务连续性保障体系。
骆杰介绍,所谓“先见先行”的运维数据洞察,就是要做到对问题隐患的“先见”,以及对处置防范的“先行”。支持多源数据接入,通过关系洞察形成运维图谱,路径洞察找到真实路径,数据洞察形成行动指标体系,实现将分散的设备运行数据转化为具有高消费价值的信息和知识。
四大核心价值 锐捷乐享让IT运维更轻松
该平台具备以指标体系为核心的全域资源监控、以风险预防为核心的健康检查、以用户体验为核心的业务监控以及化繁为简、千人千面的工作中心四大核心价值。
1. 全域资源监控
平台通过对全类型异构IT资源自动发现及智能关联,以黄金指标体系重新定义资源监控维度,从根源上解决了数据无效、不准的问题。依托“卡点算法”有效实现告警风暴抑制,并提供原因和影响分析、处理建议等有行动力的信息,加速故障的解决和闭环。
2. 健康检查
平台的健康检查功能具备开箱即用的风险隐患排查能力,降低了风险预防技术门槛。以oracle数据库为例,该方案内置的专家经验可预防常见的多达24类风险隐患并提供63种风险分析逻辑和处理建议,可支撑运维从风险识别、分析到处置的闭环。
3. 业务监控
平台的业务监控功能,可从用户视角实时感知问题,将用户访问体验量化。并借助业务部署拓扑及数据调用关系的构建,精准定位异常原因,助力运维人员掌控全局业务运行态势。
4. 工作中心
平台为不同角色运维管理人员提供了个性化的工作中心搭建能力,帮助运维工程师实现登录即工作的便捷,同时为管理者带来掌控全局的管理驾驶舱。
管理者视图
工程师视图
骆杰表示,“通过全面提升IT系统的可观测性、支持复杂故障快速排查定位、实现网络运维从被动响应到主动预防,锐捷乐享智能运维管理平台将有效确保用户网络的业务连续、稳定运行” 。
发展至今,锐捷网络不断强化运维产品研发、推陈出新,持续致力于助力客户构建完整的IT管理体系,并深度参与政府顶层客户的运维建设与运维规范标准制定。从RIIL V1.0面世、RIIL V6.0升级、RIIL V6.5革新、RIIL-Emotion及Insight产品相继发布,再到今天锐捷乐享智能运维平台惊艳亮相,锐捷网络运维产品实现了从发展、竞争到引领、创新的质变,并赢得市场及客户的高度认可。迄今为止,锐捷网络运维产品已广泛服务于3000多家行业客户,在部委客户市场占有率超过65%,并成为政务外网、内网首选品牌;在医疗行业品牌度排名第一;超过1000家高校客户正在使用锐捷的RIIL产品。据IDC统计,2019年,锐捷在中国IT综合运维软件ITIM市场占有率第一;来自CCW的统计显示,2016至2020年,锐捷在中国IT运维管理软件市场份额位居首位。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。