SUSE Linux Enterprise Micro 5.2 的新特性
SUSE Linux Enterprise Micro 5.2是一个更加稳定的整合版本,旨在提高可用性和可靠性,其新特性包括:
引入自安装镜像,以进一步减少部署时间。自安装镜像是一个可引导的预配置镜像,可以更简便地安装到目标系统上,然后使用与现有预配置镜像相同的配置方法。自安装镜像删除了部署 SLE Micro 的手动步骤,从而优化了部署流程。
使用基于 Web管理的附加模块cockpit,增强了基于 Web 的配置和管理的可用性。
SLE Micro 的应用场景
SLE Micro 可作为单节点容器主机、Kubernetes 集群节点、单节点 KVM 虚拟化主机或公有云使用。SLE Micro 是按规模构建的,客户可以将其纳入他们的数字化转型计划中,无论是在边缘还是支持大型机的边缘部署,客户都可以按照自己的节奏将工作负载设计从单体应用过渡到微服务方式。他们可以从容器工作负载开启数字化转型,或者虚拟化他们当前的遗留工作负载,在准备好后,再迁移到容器化工作负载。在这一过程中,底层系统平台不会发生改变。
SLE Micro 的低维护性受到了客户的高度认可,它可以在帮助客户实现基础设施现代化的同时降低成本。SLE Micro 提供了一个超可靠的基础架构平台,易于使用,开箱即用,具有高度的合规性。
SLE Micro 是 SUSE 边缘解决方案不可或缺的一部分,各行业客户和合作伙伴获得的收益如下:
制造业
Krones 将工厂车间的物理服务器换成了连接到云的边缘设备,并通过在Kubernetes中使用 SLE Micro 和 K3s,将服务器数量减少了 50%。来自 KRONES AG 的软件系统研发 Ottmar Amann 表示:“我们采用了去中心化策略,将在裸机上运行的应用程序移动到完全托管的、使用 K3S 和 SLE Micro的容器化堆栈上,从而降低了运营费用,并实现了应用程序基础架构的现代化。”
电信
作为全球最大电信运营商之一的某企业,采用了供应链多样化策略,通过 K3s、SLE Micro、SUSE Manager 和 Rancher Management 对其边缘云项目进行全生命周期管理,从而降低了 TCO(硬件和软件)。
嵌入式系统
一家位于美国的大型系统集成商正在使用 SLE Micro,并通过在易于维护和更新的不可变基础架构上支持容器工作负载来降低维护成本,实现嵌入式系统的现代化。
大型服务器
凭借较小的体积、内置安全框架和几乎为零的管理成本,SLE Micro 为 IBM Z & LinuxONE 提供了高质量的容器和虚拟化主机操作系统。“我们希望我们的共同客户能够将这个不可变的 Linux 发行版作为其安全执行堆栈中的 KVM 主机,从而充分利用 IBM Z 平台的安全性和可靠性。”IBM 公司 IBM Z & LinuxONE 业务 Linux 总监 Kara Todd 表示。
基于 Arm 的系统
“通过 SLE Micro 和 K3s 的结合,SUSE 为基于 Arm 的嵌入式设备、边缘用例和工业物联网应用提供了一个出色的平台。”Arm 公司基础设施业务线服务器生态系统开发总监 Bhumik Patel 表示。
SLE Micro 与 SUSE 其他技术相结合,致力于成为部署在所有生产领域的容器工作负载的基石。如:边缘环境、嵌入式、工业物联网以及数据中心内外的各种计算环境。
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。