SUSE Linux Enterprise Micro 5.2 的新特性
SUSE Linux Enterprise Micro 5.2是一个更加稳定的整合版本,旨在提高可用性和可靠性,其新特性包括:
引入自安装镜像,以进一步减少部署时间。自安装镜像是一个可引导的预配置镜像,可以更简便地安装到目标系统上,然后使用与现有预配置镜像相同的配置方法。自安装镜像删除了部署 SLE Micro 的手动步骤,从而优化了部署流程。
使用基于 Web管理的附加模块cockpit,增强了基于 Web 的配置和管理的可用性。
SLE Micro 的应用场景
SLE Micro 可作为单节点容器主机、Kubernetes 集群节点、单节点 KVM 虚拟化主机或公有云使用。SLE Micro 是按规模构建的,客户可以将其纳入他们的数字化转型计划中,无论是在边缘还是支持大型机的边缘部署,客户都可以按照自己的节奏将工作负载设计从单体应用过渡到微服务方式。他们可以从容器工作负载开启数字化转型,或者虚拟化他们当前的遗留工作负载,在准备好后,再迁移到容器化工作负载。在这一过程中,底层系统平台不会发生改变。
SLE Micro 的低维护性受到了客户的高度认可,它可以在帮助客户实现基础设施现代化的同时降低成本。SLE Micro 提供了一个超可靠的基础架构平台,易于使用,开箱即用,具有高度的合规性。
SLE Micro 是 SUSE 边缘解决方案不可或缺的一部分,各行业客户和合作伙伴获得的收益如下:
制造业
Krones 将工厂车间的物理服务器换成了连接到云的边缘设备,并通过在Kubernetes中使用 SLE Micro 和 K3s,将服务器数量减少了 50%。来自 KRONES AG 的软件系统研发 Ottmar Amann 表示:“我们采用了去中心化策略,将在裸机上运行的应用程序移动到完全托管的、使用 K3S 和 SLE Micro的容器化堆栈上,从而降低了运营费用,并实现了应用程序基础架构的现代化。”
电信
作为全球最大电信运营商之一的某企业,采用了供应链多样化策略,通过 K3s、SLE Micro、SUSE Manager 和 Rancher Management 对其边缘云项目进行全生命周期管理,从而降低了 TCO(硬件和软件)。
嵌入式系统
一家位于美国的大型系统集成商正在使用 SLE Micro,并通过在易于维护和更新的不可变基础架构上支持容器工作负载来降低维护成本,实现嵌入式系统的现代化。
大型服务器
凭借较小的体积、内置安全框架和几乎为零的管理成本,SLE Micro 为 IBM Z & LinuxONE 提供了高质量的容器和虚拟化主机操作系统。“我们希望我们的共同客户能够将这个不可变的 Linux 发行版作为其安全执行堆栈中的 KVM 主机,从而充分利用 IBM Z 平台的安全性和可靠性。”IBM 公司 IBM Z & LinuxONE 业务 Linux 总监 Kara Todd 表示。
基于 Arm 的系统
“通过 SLE Micro 和 K3s 的结合,SUSE 为基于 Arm 的嵌入式设备、边缘用例和工业物联网应用提供了一个出色的平台。”Arm 公司基础设施业务线服务器生态系统开发总监 Bhumik Patel 表示。
SLE Micro 与 SUSE 其他技术相结合,致力于成为部署在所有生产领域的容器工作负载的基石。如:边缘环境、嵌入式、工业物联网以及数据中心内外的各种计算环境。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。