![]()
SUSE Linux Enterprise Micro 5.2 的新特性
SUSE Linux Enterprise Micro 5.2是一个更加稳定的整合版本,旨在提高可用性和可靠性,其新特性包括:
引入自安装镜像,以进一步减少部署时间。自安装镜像是一个可引导的预配置镜像,可以更简便地安装到目标系统上,然后使用与现有预配置镜像相同的配置方法。自安装镜像删除了部署 SLE Micro 的手动步骤,从而优化了部署流程。
使用基于 Web管理的附加模块cockpit,增强了基于 Web 的配置和管理的可用性。
SLE Micro 的应用场景
SLE Micro 可作为单节点容器主机、Kubernetes 集群节点、单节点 KVM 虚拟化主机或公有云使用。SLE Micro 是按规模构建的,客户可以将其纳入他们的数字化转型计划中,无论是在边缘还是支持大型机的边缘部署,客户都可以按照自己的节奏将工作负载设计从单体应用过渡到微服务方式。他们可以从容器工作负载开启数字化转型,或者虚拟化他们当前的遗留工作负载,在准备好后,再迁移到容器化工作负载。在这一过程中,底层系统平台不会发生改变。
SLE Micro 的低维护性受到了客户的高度认可,它可以在帮助客户实现基础设施现代化的同时降低成本。SLE Micro 提供了一个超可靠的基础架构平台,易于使用,开箱即用,具有高度的合规性。
SLE Micro 是 SUSE 边缘解决方案不可或缺的一部分,各行业客户和合作伙伴获得的收益如下:
制造业
Krones 将工厂车间的物理服务器换成了连接到云的边缘设备,并通过在Kubernetes中使用 SLE Micro 和 K3s,将服务器数量减少了 50%。来自 KRONES AG 的软件系统研发 Ottmar Amann 表示:“我们采用了去中心化策略,将在裸机上运行的应用程序移动到完全托管的、使用 K3S 和 SLE Micro的容器化堆栈上,从而降低了运营费用,并实现了应用程序基础架构的现代化。”
电信
作为全球最大电信运营商之一的某企业,采用了供应链多样化策略,通过 K3s、SLE Micro、SUSE Manager 和 Rancher Management 对其边缘云项目进行全生命周期管理,从而降低了 TCO(硬件和软件)。
嵌入式系统
一家位于美国的大型系统集成商正在使用 SLE Micro,并通过在易于维护和更新的不可变基础架构上支持容器工作负载来降低维护成本,实现嵌入式系统的现代化。
大型服务器
凭借较小的体积、内置安全框架和几乎为零的管理成本,SLE Micro 为 IBM Z & LinuxONE 提供了高质量的容器和虚拟化主机操作系统。“我们希望我们的共同客户能够将这个不可变的 Linux 发行版作为其安全执行堆栈中的 KVM 主机,从而充分利用 IBM Z 平台的安全性和可靠性。”IBM 公司 IBM Z & LinuxONE 业务 Linux 总监 Kara Todd 表示。
基于 Arm 的系统
“通过 SLE Micro 和 K3s 的结合,SUSE 为基于 Arm 的嵌入式设备、边缘用例和工业物联网应用提供了一个出色的平台。”Arm 公司基础设施业务线服务器生态系统开发总监 Bhumik Patel 表示。
SLE Micro 与 SUSE 其他技术相结合,致力于成为部署在所有生产领域的容器工作负载的基石。如:边缘环境、嵌入式、工业物联网以及数据中心内外的各种计算环境。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。