世界领先的开源解决方案供应商红帽公司日前发布更新的开发者工具系列,帮助企业在基于Kubernetes的混合和多云环境中更快、更一致地构建和交付应用。
据行业分析公司IDC预测,由于成熟DevOps实践的广泛实施,每天将代码部署到生产环境的大型企业的比例将从2021年的5%增加到2025年的70%。此外,由于传统DevOps自动化和流程已被Kubernetes和云原生开发方法颠覆,IDC估计,到2024年,35%的DevOps使用者将采用更加精简的GitOps自动化流程。
为了帮助客户应对这些变化,红帽推出了新的功能,进一步利用开源版本控制系统Git,来简化混合多云环境中的应用开发和部署。最新版红帽OpenShift 管道 为Tekton引入了管道即代码的技术预览,使客户能够通过Git存储库定义并管理持续集成 (CI) 管道,并利用GitOps工作流为应用生命周期带来更高的重复性、可见性和一致性。
通过新的Tekton Chains,OpenShift 管道现在提供了内置的镜像签名功能,有助于增强应用交付供应链的可靠性。开发人员还可以利用管道中的用户命名空间,以隔离需要根权限的工具,并在应用构建和交付管道中以非根身份运行这些工具,而不会影响安全功能。
借助OpenShift GitOps,客户可以通过使用熟悉的Git工作流,在易于审计的环境中自动执行、定义安全实践并进行版本管理,从而以声明方式管理他们的OpenShift集群、应用和合规操作。 最新版本包括Argo CD 2.3,带来了新的同步和差异策略、UI改进和性能增强。应用程序集(以前作为技术预览提供)现在已正式推出,以全面支持且稳定的方式,自动管理多个集群中的多个ArgoCD应用。ApplicationSets现在也与红帽高级集群管理全面集成。
使用下一代开发环境加快代码编写
红帽还推出了其下一代浏览器内部和本地开发环境,即红帽OpenShift DevSpaces 3(前身为红帽CodeReady Workspaces),以及针对业界领先的企业Kubernetes平台 – 红帽OpenShift的下一代浏览器内部和本地开发环境红帽OpenShift Local 2(前身为红帽CodeReady 容器)。
OpenShift Dev Spaces使用OpenShift和容器为开发或IT团队提供了一致且零配置的开发环境,来满足安全需求。OpenShift Dev Spaces 3构建在通过CodeReady Workspaces完成的工作之上,提供了:
OpenShift Local提供了一种快速构建OpenShift集群的方法。该工具可在本地计算机上运行,简化了设置和测试过程,让开发人员能使用开发基于容器的应用所需的全部工具,在本地模拟云开发环境。 OpenShift Local 2构建在通过CodeReady容器完成的工作之上,并提供了新的功能和增强能力,例如:
红帽对开发人员产品组合中的其他多个重要领域进行了增强:
支持证言
Mithun Dhar,红帽副总裁兼开发者工具和项目总经理
“对于当前处于业务转型一线的开发人员来说,速度、敏捷性、规模和性能都至关重要。随着创新速度加快,开发人员不仅面临着需要更快地将新应用和服务推向市场的压力,还必须更新并维护现有应用——这意味着在某些时候,他们每天要多次部署新代码。我们希望为开发人员提供工具和功能,帮助他们更高效地工作,从而尽可能轻松地应对这些挑战。”
Al Gillen,IDC集团软件开发与开源副总裁
“开发人员和DevOps专业人员将继续担负重大职责,因为他们的企业或客户要求以更快的速度创建并部署方便且用户友好的解决方案。我们看到,整个行业将能够获得一些优秀的新工具,这将有助于在未来几年加快开发和部署速度,至少会减轻一些在短期内创建更多应用的压力。”
好文章,需要你的鼓励
TAE Technologies在最新一轮投资中获1.5亿美元,累计融资约18亿美元。公司利用 AI 技术优化融合反应堆设计,目标于 2030 年代商业化发电,谷歌等巨头均参与合作。
澳大利亚国立大学和广湾大学研究团队开发的VAU-R1系统通过强化学习显著提升了视频异常理解能力。该研究不仅创建了第一个专门用于训练和评估视频异常理解的思维链基准数据集VAU-Bench,还提出了一种数据高效的强化微调框架,使模型能更准确地回答问题、定位异常时间段并提供连贯解释。实验结果表明,VAU-R1在多项选择题准确率和时间定位方面比传统方法有显著提升,为安全监控、灾害预警等领域的智能系统带来了新的可能性。
Nvidia 正在全球数据中心推广 AI 芯片,其最新 Blackwell 架构在 MLPerf 基准测试中获得最高性能,大幅加速下一代 AI 应用的训练与部署。
这项研究由香港中文大学团队提出了视频-3D几何大语言模型(VG LLM),一种无需依赖显式3D数据输入,仅通过普通视频就能理解3D世界的创新方法。通过集成3D视觉几何编码器,该模型能从视频序列中提取3D先验信息,显著提升空间推理能力。实验表明,该4B参数模型在多项3D场景理解和空间推理任务上超越了现有技术,甚至在VSI-Bench评估中胜过Gemini-1.5-Pro。