微软今天向Azure中新增了一组新功能,将让企业更容易在混合云环境中运行人工智能软件。
这些功能部分基于三个现有的Azure服务,分别是Azure Arc、Azure Machine Learning和Azure Kubernetes Service。
Azure Arc是微软混合云战略中的一个重要组成部分。该服务于2019年推出,让管理员可以通过和微软公有云编排基础设施资源相同的界面来管理本地服务器。对于管理员而言,在单个集中式界面中执行基础设施维护任务,可能要比使用多个工具的传统方法更有效。
微软新的混合云AI功能中还引入了Azure Machine Learning,一组旨在简化神经网络开发的工具。另一项服务是Azure Kubernetes Service,该服务简化了维护软件容器环境的任务。
Azure客户借助这些新功能可以更轻松地使用本地Kubernetes集群来运行AI工作负载。他们可以利用本地Kubernetes环境来训练那些通过微软基于云的Azure Machine Learning工具包创建的AI模型,也可以执行推理,或者训练完成后在生产中运行神经网络等任务。
据微软称,微软混合云AI功能支持多种用途。企业客户可以在本地运行AI工作负载,更好地利用数据中心基础设施的现有投资。同时,那些采用多云方法的组织,可以把AI工作负载分布在多个公有云平台上。
在某些情况下根据监管的要求,企业有必要在本地基础设施上运行重要的AI应用。据微软称,这些新功能可以通过简化常见的基础设施管理任务来简化这一用途。
企业将本地Kubernetes集群连接到Azure机器学习环境之后,开发人员就可以通过Azure ML Studio的工具访问该集群。据微软称,开发人员能够更轻松地在本地数据中心运行的服务器以及边缘计算设备上部署机器学习工作负载。
Azure营销企业副总裁Kathleen Mitford在今天的一篇博文中这样写道:“现在你可以在数据所在的地方——例如新的或现有的硬件和物联网设备——构建、训练和部署机器学习模型。Azure Arc为新的和现有的应用提供了具有一致性的开发、运营和安全模型。”
Azure Arc是微软混合云产品组合中的一个重要组成部分,这个更广泛的产品组合中还包括其他很多产品。微软销售的设备让企业能够在他们的本地数据中心部署Azure服务,此外还有一系列网络产品让企业组织可以用于将他们的本地系统链接到Azure。
好文章,需要你的鼓励
TAE Technologies在最新一轮投资中获1.5亿美元,累计融资约18亿美元。公司利用 AI 技术优化融合反应堆设计,目标于 2030 年代商业化发电,谷歌等巨头均参与合作。
这项来自KU Leuven、中科大和上海Memory Tensor公司的研究探索了如何利用拼图游戏训练多模态大型语言模型的视觉推理能力。研究发现,现有模型在未经训练时表现近似随机猜测,但通过强化学习能达到近乎完美的准确率并泛化到更复杂的拼图配置。有趣的是,模型能否有效学习与是否包含明确推理过程无关,且复杂推理模式是预先存在而非突然出现的。此外,研究证明强化学习在泛化能力上优于监督微调,挑战了传统的模型训练范式。这些发现不仅揭示了AI视觉理解的机制,还为未来多模态模型研发提供了重要参考。
Nvidia 正在全球数据中心推广 AI 芯片,其最新 Blackwell 架构在 MLPerf 基准测试中获得最高性能,大幅加速下一代 AI 应用的训练与部署。
这项研究提出了LoHoVLA,一种用于长时序实体任务的统一视觉-语言-动作模型,融合了高层任务规划和低层动作控制功能。与传统方法不同,它利用单一预训练视觉语言模型同时生成语言子任务和机器人动作,并采用分层闭环控制机制增强鲁棒性。研究团队构建了包含20个长时序任务的LoHoSet数据集,实验结果显示LoHoVLA在Ravens模拟器中显著优于现有方法,展现出统一架构在实现可泛化实体智能方面的潜力。