微软今天向Azure中新增了一组新功能,将让企业更容易在混合云环境中运行人工智能软件。
这些功能部分基于三个现有的Azure服务,分别是Azure Arc、Azure Machine Learning和Azure Kubernetes Service。
Azure Arc是微软混合云战略中的一个重要组成部分。该服务于2019年推出,让管理员可以通过和微软公有云编排基础设施资源相同的界面来管理本地服务器。对于管理员而言,在单个集中式界面中执行基础设施维护任务,可能要比使用多个工具的传统方法更有效。
微软新的混合云AI功能中还引入了Azure Machine Learning,一组旨在简化神经网络开发的工具。另一项服务是Azure Kubernetes Service,该服务简化了维护软件容器环境的任务。
Azure客户借助这些新功能可以更轻松地使用本地Kubernetes集群来运行AI工作负载。他们可以利用本地Kubernetes环境来训练那些通过微软基于云的Azure Machine Learning工具包创建的AI模型,也可以执行推理,或者训练完成后在生产中运行神经网络等任务。
据微软称,微软混合云AI功能支持多种用途。企业客户可以在本地运行AI工作负载,更好地利用数据中心基础设施的现有投资。同时,那些采用多云方法的组织,可以把AI工作负载分布在多个公有云平台上。
在某些情况下根据监管的要求,企业有必要在本地基础设施上运行重要的AI应用。据微软称,这些新功能可以通过简化常见的基础设施管理任务来简化这一用途。
企业将本地Kubernetes集群连接到Azure机器学习环境之后,开发人员就可以通过Azure ML Studio的工具访问该集群。据微软称,开发人员能够更轻松地在本地数据中心运行的服务器以及边缘计算设备上部署机器学习工作负载。
Azure营销企业副总裁Kathleen Mitford在今天的一篇博文中这样写道:“现在你可以在数据所在的地方——例如新的或现有的硬件和物联网设备——构建、训练和部署机器学习模型。Azure Arc为新的和现有的应用提供了具有一致性的开发、运营和安全模型。”
Azure Arc是微软混合云产品组合中的一个重要组成部分,这个更广泛的产品组合中还包括其他很多产品。微软销售的设备让企业能够在他们的本地数据中心部署Azure服务,此外还有一系列网络产品让企业组织可以用于将他们的本地系统链接到Azure。
好文章,需要你的鼓励
Qualys首席执行官Sumedh Thakar提出,将传统主要用于被动响应安全事件的SOC升级为基于风险管理的ROC,通过聚焦关键风险而非海量安全扫描,帮助公共部门更高效、低成本地降低潜在威胁。
这项研究展示了如何通过在经济问题上进行后训练,让大语言模型像经济学家一样思考,从而实现战略性泛化能力。研究团队开发了名为Recon的7B参数开源模型,通过在2,100个高质量经济推理问题上进行监督微调和强化学习,不仅提升了模型在经济基准测试上的表现,更重要的是让模型在从未直接训练过的多智能体博弈中展现出合理的战略行为。结果表明,领域对齐的后训练可以作为智能体对齐的可扩展路径,通过结构化推理问题培养出更广泛适用的理性决策能力。
全球经济正处在自动化与 AI 推动的巨大变革关口,大规模就业受冲击,而普遍基本收入(UBI)有望稳定社会、激发创新,促进经济持续健康发展。
STORM框架是一种创新的对话系统研究方法,通过模拟用户和AI助手之间的信息不对称来解决意图触发性问题。研究发现中等程度的不确定性(40-60%未知信息)在某些情况下能够优于完全透明,挑战了传统的AI设计假设。通过对四种主流语言模型的测试,团队确定了不同模型在处理用户意图形成过程中的独特特点,为任务导向对话系统设计提供了实用指导。这项研究对隐私保护设计和偏见缓解具有重要启示,表明信息的战略性限制可能比信息最大化更有效。