微软今天向Azure中新增了一组新功能,将让企业更容易在混合云环境中运行人工智能软件。
这些功能部分基于三个现有的Azure服务,分别是Azure Arc、Azure Machine Learning和Azure Kubernetes Service。
Azure Arc是微软混合云战略中的一个重要组成部分。该服务于2019年推出,让管理员可以通过和微软公有云编排基础设施资源相同的界面来管理本地服务器。对于管理员而言,在单个集中式界面中执行基础设施维护任务,可能要比使用多个工具的传统方法更有效。
微软新的混合云AI功能中还引入了Azure Machine Learning,一组旨在简化神经网络开发的工具。另一项服务是Azure Kubernetes Service,该服务简化了维护软件容器环境的任务。
Azure客户借助这些新功能可以更轻松地使用本地Kubernetes集群来运行AI工作负载。他们可以利用本地Kubernetes环境来训练那些通过微软基于云的Azure Machine Learning工具包创建的AI模型,也可以执行推理,或者训练完成后在生产中运行神经网络等任务。
据微软称,微软混合云AI功能支持多种用途。企业客户可以在本地运行AI工作负载,更好地利用数据中心基础设施的现有投资。同时,那些采用多云方法的组织,可以把AI工作负载分布在多个公有云平台上。
在某些情况下根据监管的要求,企业有必要在本地基础设施上运行重要的AI应用。据微软称,这些新功能可以通过简化常见的基础设施管理任务来简化这一用途。
企业将本地Kubernetes集群连接到Azure机器学习环境之后,开发人员就可以通过Azure ML Studio的工具访问该集群。据微软称,开发人员能够更轻松地在本地数据中心运行的服务器以及边缘计算设备上部署机器学习工作负载。
Azure营销企业副总裁Kathleen Mitford在今天的一篇博文中这样写道:“现在你可以在数据所在的地方——例如新的或现有的硬件和物联网设备——构建、训练和部署机器学习模型。Azure Arc为新的和现有的应用提供了具有一致性的开发、运营和安全模型。”
Azure Arc是微软混合云产品组合中的一个重要组成部分,这个更广泛的产品组合中还包括其他很多产品。微软销售的设备让企业能够在他们的本地数据中心部署Azure服务,此外还有一系列网络产品让企业组织可以用于将他们的本地系统链接到Azure。
好文章,需要你的鼓励
Jabra 推出 PanaCast 40 VBS:首款专为小会议室设计的 180° Android 智能音视频一体机
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。