量子计算近近一段时间来被炒得沸沸扬扬。咨询巨头McKinsey麦肯锡公司称,仍处于起步阶段的量子计算领域有可能为各行业的企业创造800亿美元的收入。
自3月以来,McKinsey在推特上重复了这一说法近20次,McKinsey的目的是促进自己不断增长的量子计算研究各个方面的数据收集,包括从创业和政府资金到使用案例及其对一系列行业的潜在影响。
这家咨询巨头认为,这个800亿美元的数字代表了量子计算参与者的“风险价值”,而不是使用案例可能创造的实际价值。量子计算参与者包括了从事量子计算各方面工作的公司,例如组件制造商、服务提供商等等。
尽管数字非常乐观,但McKinsey的报告确实也是以一些实际的现实为基础。例如,在周三的报告中,McKinsey表示,量子系统的硬件“仍然太不成熟,无法实现大量的使用案例”,进而限制了“刚起步的软件公司的机会”。报告的作者补充表示,这可能是新的量子初创企业进入市场的速度开始放缓的原因之一。
甚至McKinsey关于量子计算的页面顶端也承认,有能力的系统要到2030年才会就绪,这与包括英特尔在内的各个行业参与者的预期是一致的。就像核聚变一样,量子计算始终是十年左右以后的事情。
McKinsey也像所有正在探索量子计算是否具有现实价值的公司一样正试图走精细路线,一方面探索量子计算的可能性,同时又指出量子计算技术与普通企业现实未能接轨的地方。
McKinsey在2021年12月的一篇文章讨论了用例如何才“变得真实”,文章表示,“虽然量子计算有望帮助企业解决传统高性能计算机无法达到的问题和速度,但在目前的早期阶段,使用案例主要是实验性和假设性的。事实上,专家们仍在争论该领域最基础的话题。”
可以说,这份报告对2022年量子行业来说只是某种隐喻,偏向于对未来生态系统的盈利能力的狂热乐观,而实际还没有真正了解量子计算技术将来到底意味着什么和对谁意味着什么以及怎样的规模。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。