量子计算近近一段时间来被炒得沸沸扬扬。咨询巨头McKinsey麦肯锡公司称,仍处于起步阶段的量子计算领域有可能为各行业的企业创造800亿美元的收入。
自3月以来,McKinsey在推特上重复了这一说法近20次,McKinsey的目的是促进自己不断增长的量子计算研究各个方面的数据收集,包括从创业和政府资金到使用案例及其对一系列行业的潜在影响。
这家咨询巨头认为,这个800亿美元的数字代表了量子计算参与者的“风险价值”,而不是使用案例可能创造的实际价值。量子计算参与者包括了从事量子计算各方面工作的公司,例如组件制造商、服务提供商等等。
尽管数字非常乐观,但McKinsey的报告确实也是以一些实际的现实为基础。例如,在周三的报告中,McKinsey表示,量子系统的硬件“仍然太不成熟,无法实现大量的使用案例”,进而限制了“刚起步的软件公司的机会”。报告的作者补充表示,这可能是新的量子初创企业进入市场的速度开始放缓的原因之一。
甚至McKinsey关于量子计算的页面顶端也承认,有能力的系统要到2030年才会就绪,这与包括英特尔在内的各个行业参与者的预期是一致的。就像核聚变一样,量子计算始终是十年左右以后的事情。
McKinsey也像所有正在探索量子计算是否具有现实价值的公司一样正试图走精细路线,一方面探索量子计算的可能性,同时又指出量子计算技术与普通企业现实未能接轨的地方。
McKinsey在2021年12月的一篇文章讨论了用例如何才“变得真实”,文章表示,“虽然量子计算有望帮助企业解决传统高性能计算机无法达到的问题和速度,但在目前的早期阶段,使用案例主要是实验性和假设性的。事实上,专家们仍在争论该领域最基础的话题。”
可以说,这份报告对2022年量子行业来说只是某种隐喻,偏向于对未来生态系统的盈利能力的狂热乐观,而实际还没有真正了解量子计算技术将来到底意味着什么和对谁意味着什么以及怎样的规模。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。