抛开量子比特的物理学基本原理不谈,云巨头倒是对未来充满信心。
量子硬件显然还未发展成熟,但量子计算的发展步伐要比量子网络略快些许。事实上,对于超安全交易而言,量子网络已经成为一个深奥、但却极具深远意义的技术领域。而亚马逊云科技(AWS)正致力于将量子连接从实验室环境带入现实世界。
AWS一直没有推动自研量子处理器,而是通过Braket服务围绕现有量子设备和工具建立了生态系统。但之前的努力基本都针对量子计算展开,如今这家科技巨头终于将目光投向了量子网络。
除了2021年底建立的量子计算中心之外,AWS还宣布将建设量子网络中心。该公司宣称,量子网络中心的建设目的在于“解决基础性科学与工程挑战,并为量子网络开发新的硬件、软件与应用程序。”
与量子计算机一样,这些网络同样利用粒子物理学原理,特别是借由光子实现信息传输。AWS描述了早期潜在应用场景,包括对各独立量子系统进行集群化,由此实现超越传统加密的量子密钥分发——这也是美国政府目前密切关注的研究课题。
2020年,美国能源部建立起量子互联网蓝图,其中包含四大量子网络优先研究方向,用以明确当前最重要的攻坚概念:
尽管仍有未解的难题,但美国能源部表示,他们“已经获得一定进展,可以考虑从小规模实验转向建立首个全国性量子互联网设施。”
美国能源部的第三项研究领域,针对的就是功能性量子互联网的主要实现障碍之一。从本质上讲,这里指向的是量子物理学层面的一个基本问题:光子无法被放大,因此传输范围是有限的。AWS解释称,“这就意味着必须开发出特殊新技术,例如量子中继器及传感器,才能建立起全球量子网络。”
这类网络必须依赖于量子纠缠效应,但即便如此,传输范围仍无法令人满意。美国能源部在其蓝图中表示,纠缠实验的距离虽然可延伸至令人印象深刻的1200公里,但还是不足以支撑起全球互联网体系。
荷兰研究人员最近解决了量子网络中的一个基本问题——通过中间节点实现数据传输。但论文并未提及此项实验能够实现多大的传输范围。
面对一系列工程与科学挑战,AWS的量子网络中心当然得挑选出合适的切入课题,但中心建立公告中并未具体说明。亚马逊方面也未披露关于量子网络中心的未来发展计划。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
保加利亚研究团队通过创新的双语训练方法,成功让AI模型学会了在非英语环境下使用外部工具。他们开发的TUCAN模型在保加利亚语功能调用任务上实现了显著提升,小模型改进幅度达28.75%。更重要的是,团队开源了完整的方法论,为全球多语言AI工具使用能力的发展提供了可复制的解决方案。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
清华大学团队开发了首个能同时理解街景、卫星图、轨迹和地理数据的城市AI系统UrbanLLaVA。通过创新的三阶段训练法和多模态融合技术,该系统在十二项城市任务测试中显著超越现有方法,为智慧城市、导航服务、城市规划等领域带来突破性进展,代码已开源。