球探最糟糕的噩梦莫过于花了半天时间驾车去观看别人推荐的足员,却发现球员水平远低于所需的标准,但人工智能很快将可以让球探们无需再舟车劳顿。
从本赛季开始,包括切尔西(Chelsea)、诺丁汉森林(Nottingham Forest)和奥林匹亚科斯在内的几家足球俱乐部将开始使用一款名为AiSCOUT的移动应用程序帮助他们寻找新球员。
AiSCOUT可为球探们提供足球运动员的运动能力、认知能力和技术能力的数据,球探们因此能够更精准地搜索。球员自己上传根据俱乐部设定的练习动作视频。这些练习动作是俱乐部现役球员要做的,所以可作为基准判断被甄选球员的水平。
AiSCOUT的首席运营官和体育科学主管Richard Felton表示,在过去,切尔西经常收到比赛录像,但如果不知道球员所面对的对手的水平,这些录像基本上没有用。而对比切尔西现役球员进行基准测试,俱乐部就可以知道应用程序上的球员是否值得更仔细地看看。
Felton表示,职业球员数百万英镑的签约价格基于许多的数据,但这些数据却只有在球员已经成了职业球员时才被收集。AiSCOUT应用程序将有助于为球探们提供业余球员的数据,如此球探们就可以找到目前系统遗漏的任何人。
AiSCOUT应用程序上的练习动作范围包括运球速度、注意力的测量、反应时间的认知测试等等。球员只需要一部智能手机、一个足球、一些可以用作标记的东西以及一个可以进行练习的场地就可以完成这些练习动作。Felton表示,AiSCOUT已经在各种手机上进行过测试,可以针对不同的场地表面进行调整,例如在光滑的人工草皮或沙地上运球。
使用AiSCOUT应用程序的俱乐部可以准确地敲定他们要找的特质,例如,切尔西在甄选过程的早期阶段专注于力量和速度。缺乏这些特质的球员永远不会成为切尔西的球员,但也许他们的其他特质使得他们很适合其他俱乐部。
AiSCOUT除了作为一个预筛工具外还可以帮助球探找到他们可能错过的任何球员。
AiSCOUT在早期的测试中曾发掘过一个名为Ben Greenwood的球员,切尔西后来邀请他进行了一天的试用。最后他在切尔西呆了十周。他目前在Bournemouth跟一号队一起踢球,曾代表青年爱尔兰队上过场。
Greenwood的家离切尔西的训练场只有几英里远,但在使用AiSCOUT之前,他从未被切尔西或任何其他职业俱乐部关注过。
切尔西有那么多有才华的年轻人,俱乐部可能不需要太多的帮助就可以找到新球员。人工智能真正有用的地方是帮助那些没有相同球探资源的球队找新球员。
例如一些小型国际球队,加勒比岛国球队参加过CONCACAF比赛,该球队在世界各地有很多人有资格为他们效力,但却没有球探资源去找到这些球员。甚至智利Blackburn Rovers的前锋Ben Brereton Diaz据说也是在球迷通过《足球经理》电脑游戏发现了他的智利血统后才找到的。
这一类的国家队就可以利用AiSCOUT这个应用程序寻找潜在的新球员并邀请他们参加训练营。在世界各地有数以百万计的有天赋的年轻人,他们没有参加过足球比赛,但可能拥有在比赛中取得成功的所有特质。如果人工智能可以到这些球探自己永远不会看的地方去挖掘,谁知道可以找到什么样的人才呢。
在许多足球电影中都可以看到用烂了的桥段,一名球员匆匆离开某个重要场合赶往比赛现场,就为了让曼联球探看到自己。假若诸如AiSCOUT一类的人工智能得到广泛使用,那么该球员早就已经在俱乐部的雷达上了,还可能已经被邀请过来进行试用过了。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。