最近,Amazon展示了基于人工智能的机器学习和计算机视觉算法与合成数据相结合的多种方式,以改进关键的零售自动化技术如Just Walk Out、Amazon One和Amazon Dash Cart。
近日,在美国拉斯维加斯举行的亚马逊re:MARS大会主题演讲中,Amazon实体零售和技术副总裁Dilip Kumar阐述了计算机视觉在实现这些技术方面所发挥的关键作用。例如,传感器、光学和机器视觉算法等领域的持续创新,让Just Walk Out(一种让购物者无需排队结账的技术)从中受益。
Kumar说,这些技术进步让Amazon能够减少Just Walk Out商店所需的摄像头数量,从而让他们更具成本效益,以及能够在本地运行各种算法。
“我们的传感器和算法已经发展到可以检测到各种商品,以及在大型百货商店购物行为上的差异,同时确保轻松的客户体验。当我们把Just Walk Out技术部署到第三方零售商那里的时候,我们还增加了算法所要考虑的环境多样性。”
与此同时,Amazon正在利用计算机视觉和传感器融合算法来扩展Dash Cart服务,该服务让顾客使用Amazon Fresh果蔬零售店购物的时候跳过收银台结账这一步骤。Kumar说,最重要的是,Amazon开发了更强大的算法,可以检测移动中的商品,并获取这些商品的重量和数量。
“机器视觉算法也有严格的延迟要求,因为我们需要实时地追踪客户的收据,”他补充说。
人工智能还有助于提供更好的客户推荐。例如,在Amazon的实体服装店Amazon Style,当顾客在店内扫描商品的时候,会收到一份根据这些商品提供的推荐商品列表。
“系统还会生成一些有互补性的选择,例如一件衬衫和一条牛仔裤,打造一套完整的搭配。我们竭尽全力确保购物的乐趣,同时通过机器学习算法提升体验。”
但是这一切都离不开合成数据。Kumar解释说,Amazon面临的挑战是,缺乏训练这些算法所需的多样化训练数据。为了解决这个问题,Amazon的研究人员开始着手构建大量合成数据或者由机器生成的逼真数据,可被用于对算法进行完善。
Kumar表示,就Just Walk Out来说,Amazon必须构建合成数据集来模拟真实的购物场景,例如,生成合成数据来模拟照明条件的变化,以分析各个商店的日光差异。此外,Amazon还合成了一些虚拟顾客,用于让算法学习如何同时应对众多顾客。
Amazon甚至利用合成数据生成掌纹来训练Amazon One,一种让人们使用手掌掌纹就可以在商店付款或者进入到某个实体位置所使用的服务。Kumar解释说,真正的掌纹很难获得,但Amazon需要对Amazon One的算法进行训练,来识别不同的人口统计、年龄组、温度、甚至是老茧和皱纹等变化,所以Amazon选择生成大量多样化的、逼真的合成手掌图像。
Amazon面临的最后一个挑战是,随着Amazon零售技术的不断升级,购物者的行为往往也会发生变化。Kumar解释说,Just Walk Out最初部署在规模较小的Amazon Go商店中,这些商店面积通常只有1800平方英尺,但后来被推广到规模更大、达到40000平方英尺或更大的商店。
这时候一个令人意想不到的挑战出现了,Amazon很快意识到顾客在这些商店里的行为是不同的。例如,在Amazon Fresh果蔬商店里,人们喜欢四处闲逛寻找最新鲜的商品,而在Amazon Go,顾客可能只购买一个三明治。同样地,把Just Walk Out技术扩展到旅游零售商和体育场馆等那里也带来了不同的挑战。
“所有这些情况都增加了算法的复杂性,我的团队将继续创新以满足客户和零售商的要求。” Kumar说。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。