在金融领域里正确使用人工智能不仅仅是个关乎投入最多时间或金钱的问题
根据Gartner公司调研结果,四种实施行为在快速实现一些金融人工智能(AI)计划时至关重要,包括达到或超过预期效果及实现关键财务和业务成果的计划。
Gartner财务实践研究总监Jacob Joseph-David表示,“人工智能在财务部门的使用仍处于初级阶段,大多数人在过去两年才开始使用。大多数人也未能迅速实现此类项目的预期回报。”
由于人工智能在财务领域处于起步阶段,首席财务官缺乏对成功的明确定义和战略。Gartner为首席财务官们敲定金融人工智能成功的四个关键行动(见下图)。
Joseph-David表示,“采取这四项行动的部门与没有采取这些行动的部门相比,其平均人工智能用例数量是后者的两倍。结果是更重要的业务成果,如新的产品线以及财务部门的成果,如更大的准确性和更短的流程时间。”

推动金融人工智能成功的四项行动(资料来源。Gartner,2022年6月)
一般而言,要确保拥有人工智能技能和专业知识的人才有三种选择:雇用新的人才、提高现有人才的技能或从IT部门借用人才。那些将人才战略重点放在雇用外部人工智能技能人员的组织明显地更有可能成为领先的人工智能财务组织。但大约一半的金融组织却将提升技能视为主要的人才战略。
人工智能专门人员在处理人工智能的细微差别方面可以提供宝贵的经验,这可以令相应的组织克服与人工智能应用程序合作的惯性并缩短技术学习曲线。相反,提高财务人员的技能虽然可能成本较低,但这样做有可能放慢进度并可能引入大的潜在错误。此外,新的人工智能专业人员在支持人工智能部署的新想法方面可以提供超越传统流程和思维方式的机会。
有些企业用的是购买嵌入式人工智能功能软件的方法。这些企业可以更容易地进行人工智能的试验并将其应用到更多的财务用例。这些用例也可以更容易针对独特的业务问题开展试点项目。而相比之下,为所有的财务流程建立内部人工智能解决方案则会产生更多的工作,而且会减少财务部门探索新试点或用例的机会。
顶级金融人工智能组织都是采取一种多试不怕失败的实验性方法进行人工智能部署,而不是下大的赌注。有了更多的早期试点项目,就会有更多的人工智能的使用案例,并且部署速度更快,因为组织可以聚焦最成功的试点项目。
通常情况下,最成功的组织仍在探索的用例与不太成功的组织一样,其中最常见的三个用例是会计流程、后台处理和现金流预测。一个例外是客户付款预测,大约一半的领先组织的探索用例涵括客户付款预测,但不太成功的组织则很少涉及客户付款预测。
首席财务官必须选择合适的人负责人工智能部署才能实现人工智能的好处。例如,这可能意味着选择财务规划和分析(FP&A)负责人或财务分析的负责人去领导人工智能的实施,而不是选择一个高层资深管理者。
财务规划和分析以及财务分析主管在领导人工智能方面的成功是由于其强大的分析和数据背景。他们较少依赖对传统财务流程的理解,更多地是依赖对商业环境中的人工智能复杂性的理解。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。