在金融领域里正确使用人工智能不仅仅是个关乎投入最多时间或金钱的问题
根据Gartner公司调研结果,四种实施行为在快速实现一些金融人工智能(AI)计划时至关重要,包括达到或超过预期效果及实现关键财务和业务成果的计划。
Gartner财务实践研究总监Jacob Joseph-David表示,“人工智能在财务部门的使用仍处于初级阶段,大多数人在过去两年才开始使用。大多数人也未能迅速实现此类项目的预期回报。”
由于人工智能在财务领域处于起步阶段,首席财务官缺乏对成功的明确定义和战略。Gartner为首席财务官们敲定金融人工智能成功的四个关键行动(见下图)。
Joseph-David表示,“采取这四项行动的部门与没有采取这些行动的部门相比,其平均人工智能用例数量是后者的两倍。结果是更重要的业务成果,如新的产品线以及财务部门的成果,如更大的准确性和更短的流程时间。”

推动金融人工智能成功的四项行动(资料来源。Gartner,2022年6月)
一般而言,要确保拥有人工智能技能和专业知识的人才有三种选择:雇用新的人才、提高现有人才的技能或从IT部门借用人才。那些将人才战略重点放在雇用外部人工智能技能人员的组织明显地更有可能成为领先的人工智能财务组织。但大约一半的金融组织却将提升技能视为主要的人才战略。
人工智能专门人员在处理人工智能的细微差别方面可以提供宝贵的经验,这可以令相应的组织克服与人工智能应用程序合作的惯性并缩短技术学习曲线。相反,提高财务人员的技能虽然可能成本较低,但这样做有可能放慢进度并可能引入大的潜在错误。此外,新的人工智能专业人员在支持人工智能部署的新想法方面可以提供超越传统流程和思维方式的机会。
有些企业用的是购买嵌入式人工智能功能软件的方法。这些企业可以更容易地进行人工智能的试验并将其应用到更多的财务用例。这些用例也可以更容易针对独特的业务问题开展试点项目。而相比之下,为所有的财务流程建立内部人工智能解决方案则会产生更多的工作,而且会减少财务部门探索新试点或用例的机会。
顶级金融人工智能组织都是采取一种多试不怕失败的实验性方法进行人工智能部署,而不是下大的赌注。有了更多的早期试点项目,就会有更多的人工智能的使用案例,并且部署速度更快,因为组织可以聚焦最成功的试点项目。
通常情况下,最成功的组织仍在探索的用例与不太成功的组织一样,其中最常见的三个用例是会计流程、后台处理和现金流预测。一个例外是客户付款预测,大约一半的领先组织的探索用例涵括客户付款预测,但不太成功的组织则很少涉及客户付款预测。
首席财务官必须选择合适的人负责人工智能部署才能实现人工智能的好处。例如,这可能意味着选择财务规划和分析(FP&A)负责人或财务分析的负责人去领导人工智能的实施,而不是选择一个高层资深管理者。
财务规划和分析以及财务分析主管在领导人工智能方面的成功是由于其强大的分析和数据背景。他们较少依赖对传统财务流程的理解,更多地是依赖对商业环境中的人工智能复杂性的理解。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。