IBM正在不断提升其数据质量能力,今天宣布将收购一家名为Databand.ai的公司,交易金额未对外公布。
Databand.ai是一家数据可观察性软件的提供商,其软件可以帮助企业解决任何数据相关问题,例如错误、管道故障和质量差等问题。
IBM表示,当企业越来越依赖大量信息为业务决策提供支撑的同时,数据质量也变成了企业面临的一个大问题,企业需要一种方法来了解系统中数据的健康状况,以便他们能够在这些问题影响业务之前就发现问题并对其进行修复。
所谓“坏数据”是指不准确或者不完整的数据可能会导致人工智能系统和用于评估特定产品需求的预测模型等服务出现巨大的问题。如果导入这种系统中的数据存在缺陷,那么由此生成的结果就是不可信的,因此就需要数据可观察性工具来确保信息的质量不受影响。
对于大型企业来说,坏数据是一个大问题。据Gartner估计,企业组织平均每年在解决坏数据问题上的花费高达1290万美元。
Databand.ai是数据可观察性领域的一个领先者,它使用历史趋势来计算有关数据工作负载和数据管道的统计数据,以确定这些数据是否被恰当使用以及是否可能存在问题。IBM表示,Databand.ai采用了一种开放且可扩展的数据可观察性方法,可以轻松集成到现有数据基础设施中。
IBM计划将Databand.ai的工具和IBM Observability by Instana APM以及IBM Watson Studio等服务相结合,增强在数据可观察性领域的现有能力。例如,Databand.ai可以提醒团队出现数据不完整或数据缺失等问题。
然后,该团队可以使用Instana找出丢失数据的来源,以及导致应用或服务出现故障的原因。IBM表示,通过同时使用这两种工具,客户可以更全面地了解应用基础设施和数据管道,从而更容易解决任何问题。
Constellation Research分析师Dough Henschen解释说,坏数据对企业来说仍然是一个非常现实的挑战,主要问题之一就是随着生成数据的系统发生变化或故障,“好数据也会变成坏数据”。
“数据可观察性是一种不断发展变化的方法,其中信息不仅仅是作为准备或转换过程的一部分被清理,相反,它会持续地监控和跟踪数据质量,并主动提醒下游系统的所有者、管理者和用户采取预防或补救措施,以便在动态环境中出现问题时让数据质量回归正轨。”
IBM公司数据和人工智能总经理Daniel Hernandez表示,IBM有很多客户都是数据驱动型企业,他们依靠高质量的、可信赖的信息来为他们的关键任务流程和应用提供动力。
Hernandez说:“如果他们无法访问所需的数据,业务可能就会陷入停滞。随着Databand.ai的加入,IBM将为IT跨应用、数据和机器学习提供最全面的可观察性功能组合。”
这家位于以色列特拉维夫的公司将归属于IBM数据和人工智能业务部门,该部门还包括了IBM Watson和IBM Cloud Pak for Data,Databand.ai的工具将以软件即服务或者自托管软件订阅的方式提供给客户。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。