IBM正在不断提升其数据质量能力,今天宣布将收购一家名为Databand.ai的公司,交易金额未对外公布。
Databand.ai是一家数据可观察性软件的提供商,其软件可以帮助企业解决任何数据相关问题,例如错误、管道故障和质量差等问题。
IBM表示,当企业越来越依赖大量信息为业务决策提供支撑的同时,数据质量也变成了企业面临的一个大问题,企业需要一种方法来了解系统中数据的健康状况,以便他们能够在这些问题影响业务之前就发现问题并对其进行修复。
所谓“坏数据”是指不准确或者不完整的数据可能会导致人工智能系统和用于评估特定产品需求的预测模型等服务出现巨大的问题。如果导入这种系统中的数据存在缺陷,那么由此生成的结果就是不可信的,因此就需要数据可观察性工具来确保信息的质量不受影响。
对于大型企业来说,坏数据是一个大问题。据Gartner估计,企业组织平均每年在解决坏数据问题上的花费高达1290万美元。
Databand.ai是数据可观察性领域的一个领先者,它使用历史趋势来计算有关数据工作负载和数据管道的统计数据,以确定这些数据是否被恰当使用以及是否可能存在问题。IBM表示,Databand.ai采用了一种开放且可扩展的数据可观察性方法,可以轻松集成到现有数据基础设施中。
IBM计划将Databand.ai的工具和IBM Observability by Instana APM以及IBM Watson Studio等服务相结合,增强在数据可观察性领域的现有能力。例如,Databand.ai可以提醒团队出现数据不完整或数据缺失等问题。
然后,该团队可以使用Instana找出丢失数据的来源,以及导致应用或服务出现故障的原因。IBM表示,通过同时使用这两种工具,客户可以更全面地了解应用基础设施和数据管道,从而更容易解决任何问题。
Constellation Research分析师Dough Henschen解释说,坏数据对企业来说仍然是一个非常现实的挑战,主要问题之一就是随着生成数据的系统发生变化或故障,“好数据也会变成坏数据”。
“数据可观察性是一种不断发展变化的方法,其中信息不仅仅是作为准备或转换过程的一部分被清理,相反,它会持续地监控和跟踪数据质量,并主动提醒下游系统的所有者、管理者和用户采取预防或补救措施,以便在动态环境中出现问题时让数据质量回归正轨。”
IBM公司数据和人工智能总经理Daniel Hernandez表示,IBM有很多客户都是数据驱动型企业,他们依靠高质量的、可信赖的信息来为他们的关键任务流程和应用提供动力。
Hernandez说:“如果他们无法访问所需的数据,业务可能就会陷入停滞。随着Databand.ai的加入,IBM将为IT跨应用、数据和机器学习提供最全面的可观察性功能组合。”
这家位于以色列特拉维夫的公司将归属于IBM数据和人工智能业务部门,该部门还包括了IBM Watson和IBM Cloud Pak for Data,Databand.ai的工具将以软件即服务或者自托管软件订阅的方式提供给客户。
好文章,需要你的鼓励
大多数用户只使用计算机预装的操作系统直到报废,很少尝试更换系统。即使使用较老版本的Windows或macOS,用户仍可通过开源软件获益。本文建议通过重新安装系统来提升性能,Mac用户可从苹果官方下载各版本系统安装包,PC用户则建议使用纯净版Windows 10 LTSC以获得更长支持周期。文章强调备份数据的重要性,并推荐升级内存和固态硬盘。对于老旧系统,应替换需要联网的内置应用以降低安全风险,定期进行系统维护清理。
新加坡南洋理工大学研究团队提出"棱镜假设",认为图像可像光谱一样分解为不同频率成分,低频承载语义信息,高频包含视觉细节。基于此开发的统一自编码系统UAE,通过频率域分解成功统一了图像理解和生成能力,在多项基准测试中超越现有方法,为构建真正统一的视觉AI系统提供了新思路,有望推动计算机视觉技术向更智能统一的方向发展。
微软杰出工程师Galen Hunt在LinkedIn上宣布,目标是到2030年消除微软所有C和C++代码。公司正结合AI和算法重写最大的代码库,目标是"1名工程师、1个月、100万行代码"。微软已构建强大的代码处理基础设施,利用AI代理和算法指导进行大规模代码修改。该项目旨在将微软最大的C和C++系统翻译为内存安全的Rust语言,以提高软件安全性并消除技术债务。
芝加哥伊利诺伊大学团队提出QuCo-RAG技术,通过检查AI训练数据统计信息而非内部信号来检测AI回答可靠性。该方法采用两阶段验证:预检查问题实体频率,运行时验证事实关联。实验显示准确率提升5-14个百分点,在多个模型上表现稳定,为AI可靠性检测提供了客观可验证的新方案。