Meta Platforms开发了一种人工智能(AI)系统,可以扫描维基百科的文章,分析文章引用来源,确定其中一些是否需要更改。

Meta今天详细介绍了这个AI系统,此外还根据开源许可发布了该系统的代码。
维基百科的编辑们通过检查检索信息的来源,来确保维基百科文章中某些信息是否准确,而检查文章所有引用来源是一个非常耗时的过程。维基百科有数百万页,其中一些页面包含多达数百条引文。
Meta此次发布的AI系统旨在通过对一部分论文引文审查工作实施自动化,来简化维基百科编辑们的工作。该系统可以扫描一篇文章并识别文章中是否存在有可疑引文的信息片段,此外还能够推荐相关性更高的来源,用这些来源替换有问题的引用。
例如,一篇关于某款Apple产品的维基百科文章,可能会意外引用Apple网站上讨论另外一个产品的页面,而Meta的这个新IA系统可以发现该引用是错误的,还可以推荐文章应该引用Apple网站上的准确页面。
Meta利用来自维基百科的400万条信息文本片段对该系统进行训练,使其可以检测出错误的引用。此外,Meta还创建了一个名为Sphere的数据集,其中包含来自开放网络的1.34亿个文档。当系统在维基百科文章中发现引用有问题的时候,系统就会搜索Sphere数据集中的文档,找到相关性更高的来源。
该系统找到可替换有问题的引用的新来源,这个过程涉及到多个步骤。
由于Sphere数据集包含1.34亿份文档,因此搜索相关引用可能需要大量时间。Meta研究人员开发了一系列专业指数加快了这个过程。在数据管理过程中,索引是快捷方式的集合,可以更快速地找到特定信息。
Meta的AI系统使用Meta开发的索引加快搜索Sphere数据集以查找引用,这比其他方法速度更快。当系统找到可能被引用为来源的文档时,就会从文档中提取出相关性最高的段落,还能够确定是否有多个文档可能被作为引用来源。
据Meta称,该系统可创建两个文本片段的数学表示,来确定来自Sphere的文档是否能够支持维基百科文章中的某个信息片段,然后对比这些数据表示以确定是否相关性最高。
“我们设计了一系列工具来对比这些数学表示,以确定一段陈述是支持还是反驳另一段陈述,”Meta研究人员在今天发表的一篇博客文章中详细说明称。如果该系统找到了多个可以作为来源引用的文档,就会根据相关可能性对这些文档进行排名。
研究人员详细介绍说:“该模型使用细粒度的语言理解,根据相关可能性对这些引用来源和检索到的替代方案进行排名。在现实部署环境中,该模型将提供相关性最高的链接作为预期引用来源,供编辑们进行审批。”
除了这个系统之外,Meta还开源了Sphere数据库,以及让该数据库更易于搜索的索引。此外,Meta还将公布一个名为distributed-faiss的内部工具代码,该工具可以跨多个服务器而不是在单个设备上运行索引,从而简化处理过程。
Meta相信这个AI系统、Sphere数据集等其他一系列Meta工程师开发的组件,未来可用于支持多个应用场景。Meta详细说明称:“未来可能还会推出一系列可以实时验证文档的编辑,而这次推出的模型将成为这些编辑器的首批组件。除了提出引文之外,该系统还可以根据网络上相关文件提供的信息,对自动完成文本提供建议,以及校对更正。”
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。