美国食品药品监督管理局(FDA,简称药监局)已经批准首个部署在数字听诊器内的AI算法,可供医师准确检测心脏瓣膜疾病。
当心脏瓣膜功能不正常时,即可引发瓣膜性心脏病。由于瓣膜无法正常打开或关闭,会影响血液向全身各处泵送,亦导致心腔自身难以摄入回流血液。
根据疾控中心公布的数据,全美约有2.5%的民众患有瓣膜性心脏病,每年有数万人死于心力衰竭或心脏骤停等并发症。
瓣膜性心脏病的检测往往相当棘手,要求医师听取患者心跳,并从中识别出异常声音或模式,据此判断哪个瓣膜受损、由此导致什么问题。然而,对心跳声音和模式的判断相当主观,经常发生误诊甚至彻底漏诊。
AI算法在这方面有望提供帮助。Eko是一家位于加利福尼亚州奥克兰的数字健康初创企业,他们开发出一款软件,能够分析患者脉搏并帮助医疗保健专家检测心脏杂音。这款Eko Murmur分析软件(EMAS)也成为首个获得FDA批准的同类软件。
医师可以使用搭载EMAS分析功能的Eko智能听诊器收集心跳数据。据称,EMAS能够对心脏杂音进行表征,以便在几秒钟内检测并分析患者可能患有哪种类型的瓣膜性心脏病。
Eko公司发言人在采访中表示,“EMAS是一项基于云的服务,允许用户通过应用编程接口上传心音,并结合可选心电图数据开展分析。该软件使用信号处理(例如波形滤波)及机器学习算法分析采集到的数据,据此为临床医师生成临床决策与持续输出。”
“EMAS算法能够分析心音数据,并输出带有算法结果的JSON文件。该文件随后被进一步传递至应用程序,再由应用以人类可读的格式展示给用户。”
Eko公司宣称,其EMAS工具的总体敏感性与特异性(衡量疾病识别准确度的两项指标)分别为85.6%与84.4%。相比之下,据报道全科医师在使用传统听诊器检测瓣膜性心脏病时,敏感性与特异性分别为44%与69%。
根据Eko公司发言人的介绍,“临床专家需要多年积累,才能掌握用听觉解析心脏杂音的「艺术」,而且其中仍有不少无法确定的变量。心脏病专家的整体杂音检测精度高于初级保健医师,但目前大多数病患只能接受初级医师的诊疗。只有疑似或已知患有心脏病的患者,才会经转诊接触到心脏病专家。”
FDA的批准,意味着Eko可以在美国销售其EMAS算法,并将这项技术推向整个医疗保健行业。“FDA的批准,是我们迈向商业化的重要一步。我们正在与美国各医疗机构积极寻求合作,这些机构将成为EMAS新型解决方案的早期采用者,提升对心脏瓣膜疾病的检测能力。”
好文章,需要你的鼓励
OpenAI今日宣布计划为ChatGPT配备新的安全功能,当用户遭遇心理或情感困扰时能提供更有效的帮助。首项更新将专注于GPT-5的路由组件,能检测用户急性困扰并调用推理优化的大语言模型。公司还将推出家长控制功能,允许家长与青少年账户关联,设置年龄适宜的行为规则并禁用特定功能。系统检测到青少年处于急性困扰时会发送通知。OpenAI将与青少年发展、心理健康专家委员会及全球医师网络合作完善这些功能。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
CTERA云文件服务公司发布的2025年数据与云战略调查报告显示,83%在过去两年遭受勒索软件感染的企业成功恢复,仅17%遭受永久数据丢失。调查涵盖美国、欧洲、中东、非洲和亚太地区300名高级IT和安全负责人,所有受访企业均在过去两年内遭遇勒索软件攻击。报告显示80%的领导者将安全视为2025年首要关注点,仅10%企业支付赎金。此外,98%受访者正在部署大语言模型和AI工具。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。