Alphabet旗下的DeepMind部门正在使用内部开发的人工智能系统AlphaFold来预测科学界已知的大多数蛋白质结构。
DeepMind今天宣布了这一里程碑式的成果。DeepMind正在通过免费访问的UniProt蛋白质数据库向科学家提供该AI系统预测的蛋白质结构数据,预计这些数据将加速新药的发现并推进其他多个领域的研究。
蛋白质是生命的基石,是由称为氨基酸的化学物质组成的分子,有超过20种氨基酸以高度复杂的方式相互作用,氨基酸之间的相互作用导致蛋白质呈现出复杂的三维形状,这一直是研究人员关注的焦点。
蛋白质的形状直接影响其行为,因此,了解蛋白质的形状是许多研究项目中重要的一步,DeepMind开发的AlphaFold AI系统可以协助科学家完成此项任务。
有很多种方法可以识别蛋白质氨基酸的结构,然而,这些方法很大程度上都是非常耗时的:DeepMind表示,在某些情况下,绘制出单个蛋白质的结构可能需要数年时间,而且需要使用价值数百万美元的设备。
为了加快研究速度,几十年来,科学家们一直致力于开发出能够根据蛋白质所包含的氨基酸自动预测蛋白质结构的软件。但由于这项任务的复杂性,开发此类软件已经被证明是一项巨大的挑战。根据DeepMind的说法,一种典型的蛋白质预计有非常多潜在的结构,以至于手动计算这些结构所需的时间比宇宙的年龄还要长。
AlphaFold克服了这一挑战。DeepMind早在2018年第一次详细介绍了AlphaFold系统,并在两年后推出了具有改进功能的新版本。增强之后的系统可以预测蛋白质结构,平均错误率约为1.6埃(或约为一个原子的宽度)。
现在据DeepMind透露,已经使用AlphaGo预测了超过2亿个蛋白质结构,范围涵盖了科学界已知的大多数蛋白质。
DeepMind首席执行官Demis Hassabis在一篇博客文章中详细介绍说:“此次更新包括预测植物、细菌、动物和其他生物的结构,为研究人员提供了许多新机会,让他们可以使用AlphaFold推进在包括可持续性、粮食不安全问题以及被忽视的疾病等重要问题。”
DeepMind正在通过UniProt蛋白质数据库提供预测蛋白质结构的数据集,这些结构还将添加到托管在Google Cloud上的开源数据集目录中。根据DeepMind称,之前发布的100万个预测蛋白质结构集合已经被超过500000名研究人员访问。
Hassabis这样写道:“从抗击疾病到开发疫苗,AlphaFold已经在我们面临的一些最重大的全球挑战中,取得了令人难以置信的进展,而这只是未来几年它所发挥影响力的一个开始。AlphaFold是对未来的一瞥,让我们看到把计算和人工智能方法应用于生物学的各种可能性。”
DeepMind同时也在探索AI在其他领域的新应用,例如开发了可以下围棋和预测天气的机器学习系统,最近还推出了一个可以恢复古希腊受损铭文缺失文本、预算创建时间的系统。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。