Adobe作为后期制作领导者,长期致力于支持电影制作和影视娱乐行业。近二十年来,Adobe Premiere Pro已经发展成备受信赖的剪辑软件,包括长篇和影视剧内容在内的编辑与后期都可通过Premiere Pro完成。Adobe近日宣布发布《Premiere Pro 最佳实践和用户指南》,专为电影和电视剧制作人量身打造,并提供免费下载。此指南由 Adobe 工程师、业界资深人士和屡获殊荣的剪辑人员多年精心打造,以深入研究多年来塑造无数获奖节目、电影和项目的 Premiere Pro 的基本功能。
Adobe Premiere Pro中剪辑师和后期专业人士所喜爱使用的功能Productions 于 2020 年首次推出,它显著地提高了长篇和剧集剪辑团队的工作效率和协作流程。该功能的早期版本在 Netflix 的《曼克》、派拉蒙影业的《终结者:黑暗命运》、 Netflix的《心灵猎人》、 Netflix 的《我叫多麦特》和 A24 的《瞬息全宇宙》等好莱坞作品中都进行了测试,且大获好评。
除了Productions之外,Adobe 还整理了其他关键主题,包括硬件配置、原始素材编辑工作流程、多机位剪辑、与After Effects的动态连接、中转版本等。Adobe希望此指南可以成为对世界各地剪辑人员有帮助的资源。
《Premiere Pro最佳实践和用户指南》(以下简称《Premiere Pro指南》)免费提供全面的引导,深入阐述 Premiere Pro 的主要功能,包括:
硬件与配置
在指南硬件的配置章节中,用户可以了解到 Premiere Pro 如何利用现代计算机硬件的强大功能,找到能够实现创作需求的系统。影视制作人可以了解最适合配置的硬件,以及进阶工作流程中重要的配置偏好。
原始素材编辑工作流程
原始素材指的是那些已经拍摄完成,但却未经编辑、剪辑等后期制作的电影、电视影片等。在Premiere Pro指南中,用户可以从基础开始了解 Premiere Pro 如何将原始素材编辑整合到更广泛的后期制作流程中。对该工作流程的详细考虑与设计能确保用户的项目从正确的轨道上开始。
使用Productions制作作品
Premiere Pro中的Poductions 为团队的多项目工作流程提供了一个灵活、可扩展的框架,无论用户独自工作还是与团队合作,Production都能帮助他们保持项目的组织性和效率。无论项目规模大小,Productions 均可适用。
多机位编辑
Premiere Pro 具有深入而灵活的多机位编辑功能,《Premiere Pro指南》详细解读了如何判断哪种工作流程适合哪些情况,帮助用户顺利地开启多机位工作。
与After Effects 的动态连接
动态连接(Dynamic Link)功能强大,通过这一技术,用户可以直接在 Premiere Pro 的时间轴中查看 After Effects 的工作进度(如标题或视觉效果),而无需渲染。
中转版本
中转版本(Turnovers)是指输出项目数据和媒介存档的过程,让Premiere Pro中输出的档案可被其他的应用程序所读取,同时另一位创作者或剪辑人员也可以接续完成他们的工作。本章内容也包括了如何将转档输出后的版本提交给调色、音频混合和视觉效果团队的最佳实践与使用方法。用户还可了解如何准备时间轴以及哪些设定最适合其工作流程。
好文章,需要你的鼓励
近期有观点认为,大规模使用生成式AI和大语言模型会增强人类左脑的逻辑分析能力,同时削弱右脑的创造力,导致人类社会逐渐成为左脑主导的群体。但研究表明,左右脑功能分工理论缺乏科学依据,大脑两半球在创造性和逻辑性任务中都会协同工作。此外,AI不仅能辅助逻辑思维,同样可用于诗歌创作、图像生成等创意任务。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软全球AI巡展在迪拜举行,宣布启动Microsoft Elevate UAE项目,计划为超过25万名学生和教育工作者以及5.5万名联邦政府员工提供AI技能培训。该项目是微软152亿美元投资计划的一部分,旨在加强AI基础设施建设,培养本地人才能力。微软还将与G42和JAHIZ平台合作,为联邦公务员提供技术培训,支持阿联酋成为AI领域的区域和全球领导者。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。