未来数据生态系统架构是什么模样?
Gartner认为,未来的数据生态系统应该利用分布式数据管理组件,可以在多个云和/或本地运行,但应被视为具有高度自动化的紧密的整体,像集成、元数据和治理功能将各个组件粘合在一起。
企业中不同的角色会关心不同的数据架构和方法论,数据网格(Data Mesh)、数据编织(Data Fabric)、湖仓一体(Data Lakehouse)是所有角色都会关注的三个数据框架和方法论。Cloudera则提供了适用于数据编织、数据湖库、数据网格和未来数据生态系统架构要求的混合数据平台。
构建未来数据生态系统架构
数据网格(Data Mesh)是数据与产品思维的融合。其是一种范式转变,数据由业务中的不同域拥有和管理,数据由最了解数据的域拥有,随时可供企业内的任何其他域使用。ThoughtWorks公司的工程师Zhamak Dehghani提出了数据网格的四个原则,分别是领域所有权原则、数据即产品原则、自助数据平台原则、联合计算治理原则。
数据编织(Data Fabric)各家评测机构都有自己的框架,Cloudera看来,数据编织的管控流程和之前所有数据管控方法一样,现在要做的不光要对人工的方式、手动数据管理进行服务,也要对未来的机器学习、自动的发现方式、对外进行服务,这个框架比以前要求更高。
湖仓一体(Data Lakehouse)集成并统一了数据仓库和数据湖的功能,在支持单一平台上的AI、BI、ML和数据工程。新技术能力支撑下,由上至下和由下至上的融合,适用于数据分析和机器学习工作负载。
Cloudera大中华区技术总监刘隶放表示,在企业内部针对不同的角色,要讲不同的数据架构和方法论,这之间并不矛盾。
Cloudera大中华区技术总监刘隶放
CEO、CIO、CDO关注如何在管理成本和维护人员规模的同时进行扩展,也就是数据你网格;CTO、CSO关注用什么技术方案保持一致性并构建标准模式,也就是数据编织;领域从业者关注在具体项目上的优化,也就是湖仓一体。
混合数据平台能做些什么
作为一家混合数据企业,Cloudera提供适用于数据网格、数据编织、数据湖仓和未来数据生态系统架构要求的混合数据平台,允许客户在多个公共和私有云以及本地访问和分析数据,使企业能够做出由数据驱动的明智决策,帮助企业建立由数据驱动的未来。
为什么说Cloudera是未来数据生态系统架构要求的混合数据平台,这主要源于三点,第一,开放数据编织、湖仓一体和数据网络,可以在任何地方提供大规模数据;第二,多云和本地数据管理和分析;第三,一次编写,随处运行的数据分析可移植性;第四,使用开放的云原生存储格式统一安全和治理,SDX能够真正帮助客户在新的形势下跨云,包括云原生、不同的存储中,做到数据统一的安全管控和治理。
“从产品构建角度,Cloudera数据平台可以支持现代数据架构。”刘隶放指出,Cloudera拥有三大核心优势,首先以更灵活且简单的方式帮助客户建立数据驱动型文化,其次以性能和成本效益驱动价值,最后与大量合作伙伴做开放性认证,支持开放的标准和互操作性,以速度和控制拉动企业增长。
从算力的角度来说,边缘计算非常重要,一些问题可以通过机器学习的处理模型在边缘进行处理,这对于数据安全性有要求的企业,可以实现数据要脱敏和过滤。
未来数据平台一定存在跨云模式,选择同一个平台,同一个计算引擎,到另外一个平台也可以使用,不需要改造,这是一个非常重要的考量的点。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。