麻省理工学院和IBM Watson AI Lab的研究人员创建了一个机器学习模型,用于预测听众在3D空间内的不同位置上会听到什么。
研究人员首先使用这个机器学习模型来了解房间中的任何声音是如何在空间中传播的,按照人们通过声音理解自身所处环境的方式构建3D房间的图景。

在麻省理工学院电气工程与计算机科学系(EECS)研究生Yilun Du共同撰写的一篇论文中,研究人员们展示了如何将类似于视觉3D建模的技术应用于声学领域。
但是他们要面对声音和光线传播的不同之处。例如,由于障碍物、房间的形状和声音的特性,听众处在房间中不同的位置可能会对声音产生非常不同的印象,从而让结果变得难以预测。
为了解决这个问题,研究人员们在他们的模型中建立了声学特征。首先,在所有其他条件都相同的情况下,交换声音源和听众的位置不会改变听众听到的内容。声音还特别受本地条件影响,例如位于听众和声音源之间的障碍物。
Du表示:“到目前为止,大多数研究人员只专注于视觉建模。但是作为人类,我们有多种感知模式。不仅视觉很重要,声音也很重要。我认为这项工作开辟了一个令人兴奋的研究方向,可以更好地利用声音来模拟世界。”
使用这种方法,生成的神经声场(NAF)模型能够对网格上的点进行随机采样,以了解特定位置的特征。例如,靠近门口会极大地影响听众听见房间另一侧声响的内容。
该模型能够根据听众在房间中的相对位置预测听众可能从特定声学刺激中听到的内容。
这篇论文表示:“通过将场景中的声学传播建模为线性时不变系统,NAF学会不断地将发射器和听众的位置映射到神经脉冲响应函数,后者可以应用于任意声音。”“我们证明了NAF的连续性让我们能够在任意位置为听众渲染空间声音,并且可以预测声音在新位置的传播。”
MIT-IBM Watson AI Lab的首席研究员Chuang Gan 也参与了该项目,他表示:“这项新技术可能会为在元宇宙应用程序创建多模态沉浸式体验带来新的机会。”
我们知道不是所有 Reg 读者都会对这个用例感到兴奋。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。