作者|高飞
操作系统和数字体验的关系是最直接和紧密的。
举个例子来看,20年前,1992年微软发布了划时代的操作系统,可以流畅支持鼠标操作的Windows 3.1。这就意味着,即使一个用户的电脑的硬件没有任何升级变化,假设还是286或386,也依然可以通过一个叫“扫雷”的游戏体验到用鼠标操作电脑的乐趣。
这个例子,也可以直接套用到鸿蒙(HarmonyOS)操作系统的一项特性——分布式能力上。
今年的华为开发者大会(HDC 2022)上,鸿蒙强调了它的八项创新能力,包括分布式能力、原子化服务、AI、地图、音视频、隐私安全等,「分布式」是第一个创新特征。
而在4年前,鸿蒙在HDC的发布虽然是在“被制裁无操作系统核心服务可用”的背景下发生的。但鸿蒙从诞生开始,就有自己的使命和主张,而非简单地做一个备胎。当时被强调最多的特性,也是分布式,即支撑鸿蒙作为面向万物互联的操作系统最核心能力。
消费者的手机即使是硬件没有任何的变化,也能够通过鸿蒙的分布式软总线、端云协同等能力,获得以前没有感受过的跨设备应用和数据流转体验。
而对开发者来说,他们也得到了“一次开发,多端部署”的编程体验,更容易开发出“终端可分可合,数据自由流转”的应用场景。
因此,鸿蒙做的事儿,虽然初衷是替代,但是,是更有意义的替代,也是鸿蒙区别于同行,在发展理念上的第一个发展抓手。
当然,只有新特性,还不足以吸引开发者的目光。
几十年前,IBM的OS/2 操作系统,有很多Windows 没有的特性,但是因为装机量不够多,所以缺乏开发者新的应用支持,所以还是没能赢过微软。
鸿蒙的第二个抓手就是装机量。
华为不能再用谷歌GMS的时候,正值智能手机业务发展的高峰,不仅在中国,甚至在欧洲市场也塑造了高端品牌形象。
但是对于开发者来说,更重要的是,华为手机的既有的巨大的存量市场。
有了数亿现有设备的支持,和后续虽然没有5G、但是依然得到国内消费者追捧的新机,让鸿蒙平台的开发者更容易、更快速的获得市场回报,而不是像早期Linux系统的发展一样,要经历一个漫长的爬坡期。
或许是鸿蒙系统本来是为物联网系统打造的,所以鸿蒙从一开始,就非常注重非手机终端的支持。
我们一直在说“万物互联,万物智能”。鸿蒙应该是这八个字的坚定践行者。
拿业界最关心的产品「汽车」来说。
虽然对于汽车的评价有多样化的指标,消费者也有多元化的口味,但是目前来看,鸿蒙赋能的车机体验,确实有比较一致的好口碑。
所以,余承东就曾经毫不客气的说,鸿蒙座舱是“车机天花板”,特别是,有像“手机”一样流畅丝滑的车机。
不过,还有一些非常值得关注的,也是比较容易被忽视的行业场景。
比如在医疗健康领域,华为和301医院、北京大学第一医院合作,做到基于华为手表检测到的HRV、呼吸率、血氧、异常咳嗽音等生理参数,进行肺功能评估,实现慢阻肺风险筛查。
实际上,相对消费电子这样对AI等新技术使用的非常靠前的领域,传统行业有许多场景是落后于技术发展的。甚至,如果用技术用的不好,还不如没有技术。
很多老年人就抱怨,不会用现在的所谓“智能电视”。然后我们就看到了华为将包括家电在内的“全屋智能”作为发展的新重点。无疑,以后的房屋装修,除了传统的水电墙面木工,必然会增加一项以网络为核心的数字化、智能化。
其实严格来说,汽车也属于这个范畴。如果没有新能源和智能化两个新引擎,百年汽车工业的市场版图,一定不会是现在的面貌。
在古代神话中,鸿蒙是天地开辟之前的一团元气。把智能手机上已经用的非常纯熟的AI等能力,正如同将元气释放到传统行业中实现数字化转型,这是鸿蒙作为新OS的第三个抓手,应该也是最有潜力的抓手。
好文章,需要你的鼓励
施耐德电气以“新质服务+产业向‘新’行”为主题,第六次参会,展示全新升级的“新质服务体系”,围绕创新驱动、生态协同和行业赋能三大核心领域,以全新升级的“新质服务体系”,助力中国产业向高端化、智能化、绿色化迈进。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
甲骨文正在成为大规模基础设施供应商的可靠选择。该公司通过AI技术推动应用开发,构建GenAI模型并将智能代理集成到应用套件中。CEO萨弗拉·卡茨透露,公司剩余履约义务达4553亿美元,同比增长4.6倍,并预测OCI收入将从2026财年的180亿美元增长至2030财年的1440亿美元。甲骨文正积极布局AI推理市场,凭借其作为全球最大企业私有数据托管方的优势地位,有望在云计算领域实现重大突破。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。