AWS近日推出了云图形数据库服务Amazon Neptune的无服务器版本——Amazon Neptune Serverless。
Amazon Neptune Serverless旨在简化管理员的日常工作,将有助于降低云基础设施的成本。
图形数据库是一种专门的数据库,不仅可以存储业务记录,还可以存储有关这些记录如何相互连接的信息。例如,图形数据库可以突出显示两个销售记录是否由同一业务部门生成。此外,企业还可以存储有关其他类型数据集之间连接的信息,例如服务器和网络日志。
图形数据库并不是唯一能够存储此类连接的数据库类型,但是,图形数据库保存信息的方式,使其比使用其他不太专业的系统更快地执行分析,因此图形数据库被广泛用于支持那些需要能够识别不同数据点之间链接的应用。
Neptune是Amazon的一种托管型图形数据库服务,可以自动执行多项日常维护任务,包括备份、恢复和修补。Neptune Serverless是此次新推出的无服务器版本,可以自动执行更多维护任务,以进一步简化公司的技术运营。
应用发送到图形数据库环境的查询数量会随时间而变化,随着使用情况的变化,也就必须相应地增加或者减少为数据库环境提供的基础设施数量以满足需求。Neptune客户通常是以手动的方式执行此类任务。
Neptune Serverless可以自动执行该任务,据AWS称,该产品可以检测应用需求何时发生变化,并根据用户的需求添加或者删减数据库容量。AWS表示,Neptune Serverless只需不到一秒钟的时间就可以为数十万个查询预置容量。
自动化基础设施配置过程减少了管理员的手动工作,据AWS称,Neptune Serverless还可以帮助企业在某些情况下降低高达90%的成本,例如当应用以峰值容量运行的时候。当应用开始以峰值容量运行时快速扩展数据库环境并在使用水平下降后对其进行缩减,通常是很难用手动的方式执行的。
“现在,客户借助Amazon Neptune Serverless就拥有了这样一个图形数据库,它可以自动预置和无缝扩展集群,以提供恰到好处的容量来满足需求,从而使他们能够构建和运行应用,即使是那些最可变的、不可预测的工作负载,”AWS数据库、分析和机器学习副总裁Swami Sivasubramanian这样表示。
Neptune Serverless是AWS推出的一系列无服务器产品中的最新一款产品。此前AWS推出了基于云的Amazon Redshift数据仓库和Amazon Aurora关系型数据库服务的无服务器版本。今年早些时候,Amazon Aurora产品增加了新的功能,旨在为客户优化云基础设施成本的同时提高性能水平。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。