AWS近日表示,通过推出一项名为Amazon Omics的全新专用服务加大对遗传学研究的投入。
AWS在本周举行的AWS re:Invent上表示,Amazon Omics旨在帮助医疗保健提供商和生命科学组织存储、查询、分析基因组和转录组数据,以及其他类型的组数据,然后生成有助于改善健康和推进科学发现的洞察。
AWS首席开发布道师Channy Yun在博客文章中解释说,医疗保健和生命科学公司通常会收集各种生物数据,目的是利用这些信息来改善患者护理并推进科学研究,这种研究被业内人士称为“组学”研究。
Yun解释说:“这些组织会绘制出个体对疾病的遗传易感性,根据蛋白质结构和功能确定新的药物靶点,根据特定细胞中表达的基因分析肿瘤,或者研究肠道细菌会给人类健康带来怎样的影响。”
组学的全部意义在于,通过收集数千人的基因数据,并对其进行比较和分析,研究人员可以产生新的洞察来预测疾病、各种不同药物和治疗的疗效。因此,组学对于推进医学研究和药物发现是至关重要的。
组学研究的一个大问题是,必须是大规模进行的,这可能会给那些没有能力处理这些数据的医疗保健公司和生命科学组织带来问题。
AWS首席医疗官兼技术健康AI副总裁Taha Kass-Hout在接受采访时表示:“这类数据非常复杂,围绕细胞生物学的数据呈现爆炸式增长,这超出了人类自身的理解能力。”
组学研究涉及到处理PB级的数据,因此研究人员需要一种经济高效的方式来存储这些信息,以及简单的方式访问这些信息。Yun说:“你需要在保持准确性和可靠性的同时,扩展数百万生物样本的计算,还需要专门的工具来分析人群中的遗传模式,并训练机器学习模型来预测各种疾病。”
AWS认为这就是Amazon Omics的用武之地。Amazon Omics可以支持对组学数据的大规模分析和协作研究。Amazon Omics不仅提供了此类信息的一种有效存储方式,而且让研究人员可以轻松利用其他AWS服务来分析整个人群的基因组数据,还可以自动配置和扩展生物信息学工作流程,使研究人员能够大规模运行分析管道。
Amazon Omics服务主要面向生物信息学家、研究人员和科学家,由三个主要部分组成:用于组学优化的对象存储,以更低成本高效地存储和共享数据;用于生物信息学工作流程的托管计算,使执行数据分析变得简单;用于优化的数据存储,可以对人口规模进行变异分析。
Amazon Omics实际上就是支持性分析,为此它兼容Amazon SageMaker等服务,后者可针对非常特定的目的训练机器学习模型。例如,用户可以训练机器学习模型来分析组学数据,并预测某些人是否易患某些类型的疾病,还可以将个人的基因组数据与其在Amazon HealthLake中的病史结合起来。
Amazon Omics现在已经在AWS位于美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)、欧洲(法兰克福)、欧洲(爱尔兰)和欧洲(伦敦)的区域上线。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。