AWS近日表示,通过推出一项名为Amazon Omics的全新专用服务加大对遗传学研究的投入。
AWS在本周举行的AWS re:Invent上表示,Amazon Omics旨在帮助医疗保健提供商和生命科学组织存储、查询、分析基因组和转录组数据,以及其他类型的组数据,然后生成有助于改善健康和推进科学发现的洞察。
AWS首席开发布道师Channy Yun在博客文章中解释说,医疗保健和生命科学公司通常会收集各种生物数据,目的是利用这些信息来改善患者护理并推进科学研究,这种研究被业内人士称为“组学”研究。
Yun解释说:“这些组织会绘制出个体对疾病的遗传易感性,根据蛋白质结构和功能确定新的药物靶点,根据特定细胞中表达的基因分析肿瘤,或者研究肠道细菌会给人类健康带来怎样的影响。”
组学的全部意义在于,通过收集数千人的基因数据,并对其进行比较和分析,研究人员可以产生新的洞察来预测疾病、各种不同药物和治疗的疗效。因此,组学对于推进医学研究和药物发现是至关重要的。
组学研究的一个大问题是,必须是大规模进行的,这可能会给那些没有能力处理这些数据的医疗保健公司和生命科学组织带来问题。
AWS首席医疗官兼技术健康AI副总裁Taha Kass-Hout在接受采访时表示:“这类数据非常复杂,围绕细胞生物学的数据呈现爆炸式增长,这超出了人类自身的理解能力。”
组学研究涉及到处理PB级的数据,因此研究人员需要一种经济高效的方式来存储这些信息,以及简单的方式访问这些信息。Yun说:“你需要在保持准确性和可靠性的同时,扩展数百万生物样本的计算,还需要专门的工具来分析人群中的遗传模式,并训练机器学习模型来预测各种疾病。”
AWS认为这就是Amazon Omics的用武之地。Amazon Omics可以支持对组学数据的大规模分析和协作研究。Amazon Omics不仅提供了此类信息的一种有效存储方式,而且让研究人员可以轻松利用其他AWS服务来分析整个人群的基因组数据,还可以自动配置和扩展生物信息学工作流程,使研究人员能够大规模运行分析管道。
Amazon Omics服务主要面向生物信息学家、研究人员和科学家,由三个主要部分组成:用于组学优化的对象存储,以更低成本高效地存储和共享数据;用于生物信息学工作流程的托管计算,使执行数据分析变得简单;用于优化的数据存储,可以对人口规模进行变异分析。
Amazon Omics实际上就是支持性分析,为此它兼容Amazon SageMaker等服务,后者可针对非常特定的目的训练机器学习模型。例如,用户可以训练机器学习模型来分析组学数据,并预测某些人是否易患某些类型的疾病,还可以将个人的基因组数据与其在Amazon HealthLake中的病史结合起来。
Amazon Omics现在已经在AWS位于美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)、欧洲(法兰克福)、欧洲(爱尔兰)和欧洲(伦敦)的区域上线。
好文章,需要你的鼓励
OpenAI发布了音视频生成模型Sora 2,同时推出配套社交应用Sora,用户可生成包含自己的视频并在类似TikTok的信息流中分享。Sora 2在物理定律遵循方面有显著改进,视频更加真实。应用提供"客串"功能,允许用户将自己植入生成场景中,并可与朋友分享形象使用权限。该iOS应用目前在美加地区采用邀请制,ChatGPT Pro用户可直接体验。
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
大语言模型和生成式AI自诞生以来问题频发,从推理模型表现不佳到AI幻觉现象,再到版权诉讼,这些都表明当前技术路径可能并非通往真正智能的正确道路。专家认为,仅靠增加数据和算力的扩展模式已显现边际效应递减,无法实现通用人工智能。研究者提出智能应包含统计、结构、推理和目标四个层次的协调,并强调时间因果性的重要性。面对LLM技术局限,业界开始探索神经符号AI等替代方案。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。