AWS近日表示,通过推出一项名为Amazon Omics的全新专用服务加大对遗传学研究的投入。
AWS在本周举行的AWS re:Invent上表示,Amazon Omics旨在帮助医疗保健提供商和生命科学组织存储、查询、分析基因组和转录组数据,以及其他类型的组数据,然后生成有助于改善健康和推进科学发现的洞察。
AWS首席开发布道师Channy Yun在博客文章中解释说,医疗保健和生命科学公司通常会收集各种生物数据,目的是利用这些信息来改善患者护理并推进科学研究,这种研究被业内人士称为“组学”研究。
Yun解释说:“这些组织会绘制出个体对疾病的遗传易感性,根据蛋白质结构和功能确定新的药物靶点,根据特定细胞中表达的基因分析肿瘤,或者研究肠道细菌会给人类健康带来怎样的影响。”
组学的全部意义在于,通过收集数千人的基因数据,并对其进行比较和分析,研究人员可以产生新的洞察来预测疾病、各种不同药物和治疗的疗效。因此,组学对于推进医学研究和药物发现是至关重要的。
组学研究的一个大问题是,必须是大规模进行的,这可能会给那些没有能力处理这些数据的医疗保健公司和生命科学组织带来问题。
AWS首席医疗官兼技术健康AI副总裁Taha Kass-Hout在接受采访时表示:“这类数据非常复杂,围绕细胞生物学的数据呈现爆炸式增长,这超出了人类自身的理解能力。”
组学研究涉及到处理PB级的数据,因此研究人员需要一种经济高效的方式来存储这些信息,以及简单的方式访问这些信息。Yun说:“你需要在保持准确性和可靠性的同时,扩展数百万生物样本的计算,还需要专门的工具来分析人群中的遗传模式,并训练机器学习模型来预测各种疾病。”
AWS认为这就是Amazon Omics的用武之地。Amazon Omics可以支持对组学数据的大规模分析和协作研究。Amazon Omics不仅提供了此类信息的一种有效存储方式,而且让研究人员可以轻松利用其他AWS服务来分析整个人群的基因组数据,还可以自动配置和扩展生物信息学工作流程,使研究人员能够大规模运行分析管道。
Amazon Omics服务主要面向生物信息学家、研究人员和科学家,由三个主要部分组成:用于组学优化的对象存储,以更低成本高效地存储和共享数据;用于生物信息学工作流程的托管计算,使执行数据分析变得简单;用于优化的数据存储,可以对人口规模进行变异分析。
Amazon Omics实际上就是支持性分析,为此它兼容Amazon SageMaker等服务,后者可针对非常特定的目的训练机器学习模型。例如,用户可以训练机器学习模型来分析组学数据,并预测某些人是否易患某些类型的疾病,还可以将个人的基因组数据与其在Amazon HealthLake中的病史结合起来。
Amazon Omics现在已经在AWS位于美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)、欧洲(法兰克福)、欧洲(爱尔兰)和欧洲(伦敦)的区域上线。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。