肺癌是一种可怕的疾病。根据世界卫生组织的数据,肺癌已成全球最常见的致命病因之一,仅2020年就造成近221万例死亡。更重要的是,这种疾病具有进行性——在大多数病患身上,肺癌最初只引发轻微症状、不易引起警觉,但随后迅速演变成危及生命的重症。幸运的是,过去二十年间针对肺癌患者的诊疗方法有了巨大发展。但就目前来看,早期发现仍然是显著降低肺癌死亡率的唯一手段。
最近,麻省理工学院(MIT)与麻省总医院(MGH)宣布开发名为Sybil的深度学习模型,可利用单一CT扫描数据预测肺癌风险。相关研究已经于上击正式发表在《临床肿瘤学杂志》上,其中讨论了“以个性化潜在癌症风险评估工具服务高风险人群”的可能性。研究负责人假设“可以建立一套评估全体积LDCT(低剂量计算机断层扫描)数据的深度学习个体风险预测模型,无需额外的人口统计或临床数据即可提供可靠结论。”
该模型遵循的基本原理非常简单:“LDCT图像中包含的信息,可用于预测未来肺癌风险,且准确率高于现有可识别特征(例如肺结节)。”为此,开发人员试图“开发并验证一种深度学习算法,通过单一LDCT扫描预测未来6年内罹患肺癌的风险,并评估其潜在临床影响。”
总的来说,这项研究目前取得了阶段性成功:Sybil仅依靠单一LDCT数据,就能在一定程度上准确预测患者的肺癌风险。
毫无疑问,这项技术距离临床应用和实际推广还有很长的路要走。研究负责人自己也同意,仍需要大量工作来弄清如何在临床实践中应用这项技术——特别是如何为该技术积累起受众信心,让医生和患者愿意接受系统输出的结果。
但必须承认,该算法的出现极具象征意义,也成为改变诊疗游戏规则的一股潜在力量。
如此强大的诊断方法可谓超出以往的想象。一款工具单凭一次CT扫描就能预测长期疾病趋势,这样的能力有望解决众多现实问题,特别是实施早期治疗和降低患者死亡率。
也许会有人担心这类系统要抢医生们的饭碗,并强调还没有任何AI系统能在判断力和临床诊疗方面取代人类医生。没错,可这类系统并不是要取代医生,而是为医生提供高效且可靠的工作辅助。
像Sybil这样的系统可以作为推荐工具,将可能反映病情的特征标记给医生,再由医生根据自己的临床经验对建议做出取舍。这不仅有望提高接诊效率,也可作为辅助“查验”过程来提高诊断准确性。
当然,后续还有很多工作需要完善。科学家、开发人员和创新者们探索的脚步一刻不能止歇,他们不单要完善具体算法和系统本身,还要解决将这项技术引入实际临床后的种种细微问题。如果能找到一条安全、符合道德且行之有效的推行路线,那么这项技术在改善病患护理方面将迸发出巨大能量,最终颠覆我们所熟知的整个诊疗体系。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。