肺癌是一种可怕的疾病。根据世界卫生组织的数据,肺癌已成全球最常见的致命病因之一,仅2020年就造成近221万例死亡。更重要的是,这种疾病具有进行性——在大多数病患身上,肺癌最初只引发轻微症状、不易引起警觉,但随后迅速演变成危及生命的重症。幸运的是,过去二十年间针对肺癌患者的诊疗方法有了巨大发展。但就目前来看,早期发现仍然是显著降低肺癌死亡率的唯一手段。
最近,麻省理工学院(MIT)与麻省总医院(MGH)宣布开发名为Sybil的深度学习模型,可利用单一CT扫描数据预测肺癌风险。相关研究已经于上击正式发表在《临床肿瘤学杂志》上,其中讨论了“以个性化潜在癌症风险评估工具服务高风险人群”的可能性。研究负责人假设“可以建立一套评估全体积LDCT(低剂量计算机断层扫描)数据的深度学习个体风险预测模型,无需额外的人口统计或临床数据即可提供可靠结论。”
该模型遵循的基本原理非常简单:“LDCT图像中包含的信息,可用于预测未来肺癌风险,且准确率高于现有可识别特征(例如肺结节)。”为此,开发人员试图“开发并验证一种深度学习算法,通过单一LDCT扫描预测未来6年内罹患肺癌的风险,并评估其潜在临床影响。”
总的来说,这项研究目前取得了阶段性成功:Sybil仅依靠单一LDCT数据,就能在一定程度上准确预测患者的肺癌风险。
毫无疑问,这项技术距离临床应用和实际推广还有很长的路要走。研究负责人自己也同意,仍需要大量工作来弄清如何在临床实践中应用这项技术——特别是如何为该技术积累起受众信心,让医生和患者愿意接受系统输出的结果。
但必须承认,该算法的出现极具象征意义,也成为改变诊疗游戏规则的一股潜在力量。

如此强大的诊断方法可谓超出以往的想象。一款工具单凭一次CT扫描就能预测长期疾病趋势,这样的能力有望解决众多现实问题,特别是实施早期治疗和降低患者死亡率。
也许会有人担心这类系统要抢医生们的饭碗,并强调还没有任何AI系统能在判断力和临床诊疗方面取代人类医生。没错,可这类系统并不是要取代医生,而是为医生提供高效且可靠的工作辅助。
像Sybil这样的系统可以作为推荐工具,将可能反映病情的特征标记给医生,再由医生根据自己的临床经验对建议做出取舍。这不仅有望提高接诊效率,也可作为辅助“查验”过程来提高诊断准确性。
当然,后续还有很多工作需要完善。科学家、开发人员和创新者们探索的脚步一刻不能止歇,他们不单要完善具体算法和系统本身,还要解决将这项技术引入实际临床后的种种细微问题。如果能找到一条安全、符合道德且行之有效的推行路线,那么这项技术在改善病患护理方面将迸发出巨大能量,最终颠覆我们所熟知的整个诊疗体系。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。