最近一段时间,似乎人人都在讨论最新AI项目ChatGPT,反应或是兴奋、或是恐惧。事实上,ChatGPT已经成为一种文化现象,其网站目前正超负荷运转,甚至无法随时正常访问。整个使用体验如同打客服热线,对方会先留下你的电话号码,表示有空闲座席时会发出短信通知。

与此同时,AI技术也已经在影响各个行业,特别是给体育行业带来深远的、甚至是颠覆式的冲击。理由很简单:结果预测在体育运动中具有重大意义,在此之上作出的实时决策往往能够扭转战局。这种基于数据分析的预测思路并不新鲜,奥克兰运动家队及其总经理比利·比恩 (Billy Beane)所能调动的总薪资只有4400万美元,但却依靠数学计算与薪资总额高达1.25亿美元的洋基队等顶尖队伍打了个有来有回。布拉德·皮特出演的《点球成金》一片就是以此为原型。
《点球成金》的理论基础就是统计分析,例如重击率和上垒率。比恩认为这种预测方法要比传统的商业直觉更加稳定可靠。当时,奥克兰运动家队的老板卢·沃尔夫押下一笔重注,决定在比恩这套理论未经充分验证之时就给他个机会。沃尔夫坦言,“当时,人们觉得我这种让比恩靠统计数据、而非棒球专家做判断的行为完全是疯了。”
而时至今日,所有主要体育联盟都已经将AI引入自身运营体系,特别是球迷参与的各个层面。
NFL就借助亚马逊之力收集AI洞见。他们推出了一款包含7套AI模型的AI工具,可用于在传球之前预测本次决策的价值,进而评估四分卫的传球表现。NBA也将AI整合至参与工具当中,帮助球迷们在能够想到的几乎所有角度对球队表现做深入分析。
虽然ChatGPT目前还不涉及预测分析,但它的强大表现已经证明AI完全可以通过收集大量数据以输出高质量决策。这些决策可以与球员和比赛进程密切相关,同时给球探、教练和俱乐部经理等可能左右赛事结果的重要人物以支持和影响。
无论是该不该换人,还是开场首发抑或中后期登场,这些赛场上的传统难题都将在AI的分析之下迎刃而解。
在棒球比赛中,最重要的决策无疑就是替补何时上场、何时选择代打。同样的替补选择与上场时机问题也出现在篮球和足球赛场上。比赛的各个阶段都各有不同,每场比赛会生成海量统计数据。借助AI的力量,我们可以实时检查数百万个数据点,由此得出的结论自然要比比恩单凭重击率和基础百分比的粗糙预测可靠得多。如此一来,运动员是否首发、何时登场,甚至是整个职业生涯的预期表现和受伤几率,都将成为AI能够预测的一项指标。
但这样的发展趋势,也着实有些令人生畏。湖人队就是个好例子,他们正在努力为勒布朗·詹姆斯寻找合适的搭档。有了先进的AI,球队不必再依靠球探报告或者纯直觉,数据会直接给出适配度最高的人选。由此看来,职业经理人和球探恐怕都将被机器学习所淘汰。
教练恐怕也难以幸免。预测分析会提示队伍何时需要换人,当前的最优对抗策略是什么。想象一下,机器人教练将快速绘制出数据图表,在比赛结束之前就基本拿捏整个过程。可AI能跟詹姆斯这样的超级巨星和谐相处吗?如果运动员跟机器人观念不一致,比赛又该如何进行?
总有人觉得AI的全面普及必将造就一个反乌托邦的世界。我觉得不一定,毕竟一切都只是猜测。詹姆斯,这事你怎么看?
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。