Marvell公司日前宣布,计划将电子设计自动化(EDA)工作流程由本地迁移至亚马逊云科技(AWS)。Marvell同时强调,他们是AWS的“电光材料、网络、安全、存储及定制设计等解决方案”供应商。这项新消息相信对两家公司都有积极的推进意义。
EDA是工程师日常使用的IP块、芯片与SoC设计/模拟/调试/验证软件工具,主要由Cadence和Synopsis提供。过去十年以来,这类工具已经整合了AI技术,能够自动处理特定程序以改善产品上市时间。Cadence最近还推出了其Verisium平台,据称能够将调试生产率提升10倍。
凭借愈发强大的EDA工具,工程师们能够利用种种资源加快工作流程。但从另一个角度看,这也意味着EDA本身需要大量计算和存储资源作为支持。要想快速获取提示和答案,丰富的算力和内存必不可少。相较于本地设施,以AWS为代表的公有云显然特别适合这类工作负载。
Marvell公司产品和技术总裁Raghib Hussain也对公有云赞许有加,表示“将EDA工作负载迁往云端,将改变半导体的整个开发方式。通过在AWS云服务中运行EDA,Marvell将得以优化我们的芯片开发项目,加快我们的产品上市时间。”
Marvell并未具体说明其使用的AWS EC2实例、存储、内存、工具或文件系统,但我们可以在AWS网站上找到关于Marvell的信息(https://aws.amazon.com/solutions/semiconductor-electronics/electronic-design-automation/?solutions-all.sort-by=item.additionalFields.sortDate&solutions-all.sort-order=desc&marketplace-ppa-and-quickstart.sort-by=item.additionalFields.sortDate&marketplace-ppa-and-quickstart.sort-order=desc&solutions-whitepapers.sort-by=item.additionalFields.sortDate&solutions-whitepapers.sort-order=desc)。
Marvell还公开透露,他们本身也是AWS的重要半导体供应商。这也很正常,毕竟Marvell在云存储、电学材料、DPU(数据处理单元)、网络和HSM(硬件安全模块)等领域均处于市场领先地位。
Marvell的“灵活研发模型”
Marvell公司拥有先进的技术、IP、封装与互连储备。在芯片制造端,Marvell已经能够匹配台积电的最新3纳米顶级制程,掌握多种加速器,具备高速混合信号专家,也是多芯片模块(MCM)、共封装光学元件和封装内内存设计的领导者。Marvell的最终产品对应灵活的交付方式,客户可以直接购买、以伙伴身份参与合作(自定义IP)、通过自定义ASIC构建,或者与复杂的SoC集成。这些能力贯穿超大规模数据中心的计算、安全和存储等层面,并通过交换机连接各机架、通过光纤互连对接各处数据中心。尽管AWS没有阐明,但我个人相信Marvell应该是使用了AWS的Nitro SSD。身为云服务领域的绝对领导者,AWS也有必要积极采用Marvell的硬件安全模块。
AWS Amazon EC2副总裁David Brown在评论Marvell芯片能力的新闻稿中提到,“我们的客户通过与Marvell的合作而受益,他们将芯片创新推向了广泛而深入的云服务体系。”David Brown亲自发言,无疑是对Marvell的支持和肯定。
那么,两家运营良好的公司突然“互诉衷肠”,到底是想干什么?
虽然AWS拥有多种原研芯片(包括Nitro System、Graviton Compute、Inferentia Inference,以及即将推出的机器学习训练专用Trainium),但这类重大课题显然不是单一厂商就能解决的,所以也需要商业芯片供应商的扶持。Marvell的意义正在于此。我很期待AWS是否以及如何使用Marvell提出的所谓“灵活研发模型”中的自定义功能。对于AWS,这代表其云EDA服务已经取得重大胜利——40年来,第一次将这类负载从本地设施推上云端。同时,Marvell方面也能借此为客户提供更多新功能,为迎接半导体产业的未来做好准备。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。