2023年3月14日,英国伦敦 – Omdia的最新报告《2023年生成式人工智能市场格局》(Generative AI Market Landscape 2023)表明,虽然ChatGPT、Stable Diffusion和其他生成式人工智能(Generative AI)为市场带来的明显兴奋和潜在机会真实存在,但生成式人工智能并无法解决任何类型的人工智能所面临的任何市场挑战,生成式人工智能并非灵丹妙药。
“生成式人工智能不会解决人工智能面临的基本挑战——偏见、隐私、责任、一致性和可解释性”,Omdia首席分析师Mark Beccue表示,“事实上,生成式人工智能在很大程度上加剧了这些问题。” 例如,作为大多数生成式人工智能输出来源的大型语言模型(LLM)采用公共数据进行训练,这些公共数据可能包括毒语言或对种族、性别、性取向、能力、语言、文化等有偏见的内容,这意味着输出本身可能存在偏见或不恰当。 再例如,生成式人工智能的输出不易解释——与大多数深度学习人工智能一样,其结果很难溯源。 虽然可解释性是整个人工智能行业所面临的挑战,但对生成式人工智能产出来说,该问题尤为突出,根据定义,其产出应该是“创造的”新事物。
生成式AI不会解决人工智能面临的基本挑战
2023年,生成式人工智能市场将处于非常早期阶段。 Omdia预测,今年围绕生成式人工智能使用方法,将迸发出创造性革新,同时会带来大量关于生成式人工智能的定义及其作用的困惑。
Omdia注意到塑造生成式人工智能轨迹的其他市场趋势,包括构建和货币化大型语言模型的竞赛以及云计算供应商所起的关键作用。 Omdia的《2023年生成式人工智能市场格局》研究了这些以及更多问题。该报告将通过确定关键驱动因素和障碍、市场趋势、主要用例、关键参与者及其如此关键的原因,以及人工智能分析师团队对2023年整个生成式人工智能生态系统的预测,来帮助读者了解快速变化的生成式人工智能市场格局。
好文章,需要你的鼓励
Snap 推出 Lens Studio 的 iOS 应用和网页工具,让所有技能层次的用户都能通过文字提示和简单编辑,轻松创建 AR 镜头,包括生成 AI 效果和集成 Bitmoji,从而普及 AR 创作,并持续为专业应用提供支持。
这项研究提出了ORV(占用中心机器人视频生成)框架,利用4D语义占用作为中间表示来生成高质量的机器人操作视频。与传统方法相比,ORV能提供更精确的语义和几何指导,实现更高的时间一致性和控制精度。该框架还支持多视角视频生成(ORV-MV)和模拟到真实的转换(ORV-S2R),有效弥合了虚拟与现实之间的差距。实验结果表明,ORV在多个数据集上的表现始终优于现有方法,为机器人学习和模拟提供了强大工具。
这项研究由Writer公司团队开发的"反思、重试、奖励"机制,通过强化学习教导大型语言模型生成更有效的自我反思内容。当模型回答错误时,它会生成反思并二次尝试,若成功则奖励反思过程。实验表明,该方法在函数调用和数学方程解题上带来显著提升,最高分别改善18.1%和34.7%。令人惊讶的是,经训练的小模型甚至超越了同家族10倍大的模型,且几乎不存在灾难性遗忘问题。这种自我改进技术为资源受限环境下的AI应用开辟了新方向。