根据 Oracle 和《纽约时报》(New York Times) 畅销书作者 Seth Stephens-Davidowitz 共同开展的《决策困境》 (The Decision Dilemma) 研究发现,人们在使用数据制定决策时通常会感到迷茫,影响了他们的生活质量和业务绩效。该项研究对包括中国在内的 17 个国家/地区的 14,000 多名员工和企业负责人展开调研。研究结果显示,人们不得不做出比以往更多的决策,在生活和职业生涯中普遍面临决策困境,以下为来自中国受访者的研究数据。

随着决策次数的增加,拥有更多数据却适得其反
面对海量的数据,人们会感到穷于应付,失去对数据的信任,导致决策过程更加复杂,并对他们的生活质量产生负面影响。
决策困境造成组织惰性
企业领导者希望获得数据的助力,他们清楚知道数据对于组织的成功至关重要,但尚缺助力成功的工具,削弱了他们的信心和及时做出决策的能力。
数据必须与决策相关,否则人们会放弃决策
数据收集和分析对企业领导者来说关系重大。
数据科学家兼《人人都在说谎》(Everybody Lies) 和《别相信你的直觉》(Don’t Trust Your Gut) 作者 Seth Stephens-Davidowitz 表示:“人们正在被数据淹没。这项研究强调了一个人在普通的一天中接收的大量信息,包括互联网搜索、新闻提醒、朋友评论等。这些信息加起来,经常会超出大脑的处理能力范围。因此,人们倾向于排除令人困惑、有时甚至会相互冲突的数据,凭着直觉做出决定,但这可能是一个很大的错误。事实已经一次又一次地向我们证明,我们的直觉会有很大误导性,而明智的决策需要在正确理解相关数据的情况下才能实现。企业需要寻找一种方法来处理手头上的数据流,以区分信号和噪音,这是至关重要的第一步。”
Oracle红牛车队主席兼首席执行官 Christian Horner 表示:"当我们的车手以每小时200多英里的速度比赛时,他们必须非常迅速地做出关键且正确的决策,如何时进站、哪条轮胎最适合赛道上的条件,这可能决定了输赢。凭借Oracle云基础设施远程软件服务 (Oracle Cloud Infrastructure, OCI),我们的团队可以通过在大奖赛周末期间运行数十亿次的比赛策略模拟,确保我们根据赛车的性能、赛道上发生的变化以及比赛中竞争对手的行动做出明智的决策。"
店匠科技(Shoplazza) CTO夏冰表示:“我们以技术和数据为导向,科学系统化地提升跨境电商企业的出海效率。借助甲骨文强大的数据管理能力,我们在保障业务安全稳定的同时,还将助力跨境电商企业更好地利用数据做出正确决策,抓住商机,实现海外业务发展。”
AdTiming 首席技术官张文涛表示:“作为全球智能营销平台,我们致力于帮助移动应用开发者获取更高广告收益、提升广告体验,这其中数据收集与分析对于营销决策至关重要。云技术与人工智能的深度融合,将大幅提升数据驱动型决策能力,助力我们为全球客户提供了更为智能、高效的营销服务。”
甲骨文公司高级副总裁及亚洲区董事总经理李翰璋表示:“随着数字经济的飞速发展,企业需要更多的相关数据来获得全局视图。对于负责制定决策的企业领导者而言,如果忽视这些数据,就需自担风险。这项研究指出,企业领导者需要重新思考对待数据和决策的方法,其中关键的一点是将数据从洞察到决策再到行动中连接起来,而Oracle云技术内嵌机器学习和人工智能,充分支持基础数据管理、增强和应用分析、运营应用套件,能够有效满足这一需求。”
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。