IBM近日推出了Watsonx产品套件 ,旨在帮助企业更轻松地构建和部署AI模型。
IBM在年度Think大会上推出了其他几款新产品,同时预览了Watsonx。IBM还针对自己的云平台推出了新的计算选项,以提供对GPU的访问,此外还将发布一款AI工具,帮助客户追踪与其云使用相关的碳排放量。
Watsonx
IBM此次新推出的Watsonx产品套件包含三种不同的产品,侧重于简化企业AI项目的不同方面。
第一款产品是Watsonx.ai软件平台,可以用于训练生成式AI模型以及其他类型的神经网络。IBM称,客户将不必从头开始构建他们的模型,Watsonx.ai将提供对预先打包的AI模型目录以及用于训练这些模型的数据集的访问权限。
其中有一组内置的AI模型fm.code,旨在提高软件团队的工作效率。它允许开发人员使用自然语言命令生成代码。客户还可以访问fm.NLP,这是IBM针对特定行业任务优化的大型语言模型集合。
此外还有fm.geospatial神经网络包,其中包含的模型经过了气候数据和“遥感”信息的训练。根据IBM的说法,企业可以使用fm.geospatial来完成监测生物多样性和自然灾害模式等任务。
除了IBM开发的模型之外,Watsonx.ai还将提供对Hugging Face开源神经网络的访问。Hugging Face是由同名初创公司运营的,是一个类似GitHub的平台,用于托管开源AI模型和相关文件。IBM表示,客户可以通过该平台访问到数以千计的神经网络和数据集。
Watsonx产品套件的第二款产品是watsonx.data,据称,这是一个数据湖库,企业组织可以使用它来存储他们训练AI模型的信息。
当AI模型从数据库请求信息时,请求由查询引擎的软件进行处理,尽可能高效地检索文件,不同的查询引擎以不同的方式检索信息。
Watsonx.data将支持多种查询引擎,帮助客户优化他们的AI软件。每个应用都可以使用该模块,从而最有效地检索信息。IBM表示,watsonx.data还将提供许多自动化功能来简化用户的工作。
Watsonx套件的第三款产品是watsonx.governance。它可以检测AI偏差和模型漂移,一种导致神经网络随着时间推移而变得不准确的技术问题。IBM表示,watsonx.governance将使企业能够确保他们的AI项目符合隐私法规。
IBM公司首席执行官Arvind Krishna说:“基础模型使部署AI的可扩展性、可负担性和效率显着提高。我们构建了IBM watsonx以满足企业的需求,让客户不仅仅是用户,他们还可以成为AI领先者。借助IBM watsonx,客户可以在整个业务中快速训练和部署自定义AI功能,同时保持对数据的完全控制。”
AI新品
Watsonx套件的核心组件将于7月全面上市。IBM在此次Think活动中还详细介绍了其他很多产品。
IBM更新了公有云平台IBM Cloud,增加了可访问Nvidia GPU的计算选项。据IBM称,客户可以将Nvidia GPU用于AI训练和推理任务。推理是训练完成后在生产中运行AI模型的一种任务。
除了新的GPU选项之外,IBM还推出了IBM Cloud Carbon Calculator工具。据称,该工具使用机器学习来帮助企业衡量技术基础设施的环境影响,将于今年晚些时候全面上市。
与此同时,IBM计划将基础模型嵌入到其他几个产品中。IBM将推出一款名为Watson Code Assistant的工具,可以根据自然语言提示生成代码。基础设施方面,IBM将发布AIOps Insights,一款旨在加快故障排除任务的应用。
IBM还针对企业用户推出了新的AI功能。据称,IBM用于分析气候和地理空间数据环境的Environmental Intelligence Suite套件,将通过新Watsonx产品套件中的fm.geospatial模型得到增强。另外IBM还向Watson Assistant和Watson Orchestrate中新增了一个单独的基础模型,这两款工具主要用于对常见的业务任务实施自动化,例如处理客户支持票等。
好文章,需要你的鼓励
2025年人工智能在企业中实现突破性应用,从实验阶段转向实用阶段。八位代表性CIO分享核心经验:AI工具快速进化、需保持快节奏实验思维、重视工作流程而非组织架构、数据质量成为新挑战、采用前瞻性指标管理项目、无需等待完美时机、AI既是技术也是社会文化现象、需严格项目管理、变革重在人员而非技术、多智能体架构成未来趋势。
这项由加州伯克利分校等机构联合完成的研究开发了MomaGraph系统,首次实现了机器人对空间关系和功能关系的统一理解。该系统通过强化学习训练,能够同时识别物品位置和操作方法,并具备状态感知能力。在综合测试中达到71.6%准确率,超越同类开源系统11.4%,在真实机器人平台上验证了实用性,为智能家庭机器人的发展奠定重要基础。
日本科技投资巨头软银需要在年底前筹集225亿美元,以履行对AI合作伙伴OpenAI的资金承诺。软银是OpenAI价值5000亿美元Stargate数据中心计划的主要资助者之一。为筹集资金,软银CEO孙正义可能动用多种手段,包括利用其持有的英国芯片设计公司Arm股份作为抵押贷款。软银已清仓英伟达股份为该项目提供资金,目前可通过Arm股份借贷115亿美元,还持有价值110亿美元的T-Mobile股份及270亿美元现金储备。
MIT研究团队提出了突破性的双向归一化流(BiFlow)技术,通过训练独立的逆向模型替代传统的精确逆向过程,解决了归一化流方法架构受限和推理缓慢的核心问题。该方法采用创新的隐藏对齐策略,让逆向模型学习高效的生成路径,在ImageNet数据集上实现了高达697倍的速度提升,同时将图像质量提升到新的技术水平,为生成模型领域带来了重要的思路突破。