IBM近日推出了Watsonx产品套件 ,旨在帮助企业更轻松地构建和部署AI模型。
IBM在年度Think大会上推出了其他几款新产品,同时预览了Watsonx。IBM还针对自己的云平台推出了新的计算选项,以提供对GPU的访问,此外还将发布一款AI工具,帮助客户追踪与其云使用相关的碳排放量。
Watsonx
IBM此次新推出的Watsonx产品套件包含三种不同的产品,侧重于简化企业AI项目的不同方面。
第一款产品是Watsonx.ai软件平台,可以用于训练生成式AI模型以及其他类型的神经网络。IBM称,客户将不必从头开始构建他们的模型,Watsonx.ai将提供对预先打包的AI模型目录以及用于训练这些模型的数据集的访问权限。
其中有一组内置的AI模型fm.code,旨在提高软件团队的工作效率。它允许开发人员使用自然语言命令生成代码。客户还可以访问fm.NLP,这是IBM针对特定行业任务优化的大型语言模型集合。
此外还有fm.geospatial神经网络包,其中包含的模型经过了气候数据和“遥感”信息的训练。根据IBM的说法,企业可以使用fm.geospatial来完成监测生物多样性和自然灾害模式等任务。
除了IBM开发的模型之外,Watsonx.ai还将提供对Hugging Face开源神经网络的访问。Hugging Face是由同名初创公司运营的,是一个类似GitHub的平台,用于托管开源AI模型和相关文件。IBM表示,客户可以通过该平台访问到数以千计的神经网络和数据集。
Watsonx产品套件的第二款产品是watsonx.data,据称,这是一个数据湖库,企业组织可以使用它来存储他们训练AI模型的信息。
当AI模型从数据库请求信息时,请求由查询引擎的软件进行处理,尽可能高效地检索文件,不同的查询引擎以不同的方式检索信息。
Watsonx.data将支持多种查询引擎,帮助客户优化他们的AI软件。每个应用都可以使用该模块,从而最有效地检索信息。IBM表示,watsonx.data还将提供许多自动化功能来简化用户的工作。
Watsonx套件的第三款产品是watsonx.governance。它可以检测AI偏差和模型漂移,一种导致神经网络随着时间推移而变得不准确的技术问题。IBM表示,watsonx.governance将使企业能够确保他们的AI项目符合隐私法规。
IBM公司首席执行官Arvind Krishna说:“基础模型使部署AI的可扩展性、可负担性和效率显着提高。我们构建了IBM watsonx以满足企业的需求,让客户不仅仅是用户,他们还可以成为AI领先者。借助IBM watsonx,客户可以在整个业务中快速训练和部署自定义AI功能,同时保持对数据的完全控制。”
AI新品
Watsonx套件的核心组件将于7月全面上市。IBM在此次Think活动中还详细介绍了其他很多产品。
IBM更新了公有云平台IBM Cloud,增加了可访问Nvidia GPU的计算选项。据IBM称,客户可以将Nvidia GPU用于AI训练和推理任务。推理是训练完成后在生产中运行AI模型的一种任务。
除了新的GPU选项之外,IBM还推出了IBM Cloud Carbon Calculator工具。据称,该工具使用机器学习来帮助企业衡量技术基础设施的环境影响,将于今年晚些时候全面上市。
与此同时,IBM计划将基础模型嵌入到其他几个产品中。IBM将推出一款名为Watson Code Assistant的工具,可以根据自然语言提示生成代码。基础设施方面,IBM将发布AIOps Insights,一款旨在加快故障排除任务的应用。
IBM还针对企业用户推出了新的AI功能。据称,IBM用于分析气候和地理空间数据环境的Environmental Intelligence Suite套件,将通过新Watsonx产品套件中的fm.geospatial模型得到增强。另外IBM还向Watson Assistant和Watson Orchestrate中新增了一个单独的基础模型,这两款工具主要用于对常见的业务任务实施自动化,例如处理客户支持票等。
好文章,需要你的鼓励
随着GPU成为AI工作负载训练和运营的关键,越来越多的云服务提供商开始提供云GPU实例。这为希望避免部署GPU硬件费用和复杂性的组织带来好消息。云GPU实例可按超大规模与专业化提供商、通用与专用实例、共享与独占服务器进行分类。选择时需考虑工作负载类型、GPU类型、成本、延迟和控制级别等因素。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
企业云服务平台IFS收购硅谷代理AI专家theLoops,推出"工业AI"概念。该技术旨在创建具备语义环境感知能力的自主AI代理,专门服务于制造、能源、建筑等资产密集型行业。这些工业AI代理能够理解业务职责,遵循行业规则,与人类协同工作,执行实际工作任务而非简单的聊天或辅助功能,为企业带来可衡量的生产力提升和投资回报。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。