Gartner近日公布了2023年十大数据和分析(D&A)趋势,可帮助企业领导者通过预测变化将不确定性转化为新的商机。
Gartner副总裁分析师Gareth Herschel表示:“大规模地为组织提供可证明价值的需求,正在推动着D&A的这些趋势。Gartner在Gartner数据与分析峰会上介绍了企业和IT领导者必须参与并纳入其数据和分析战略(见图1)的十大趋势。
图1:2023年十大数据和分析趋势
资料来源:Gartner(2023年5月)
趋势1:价值优化
大多数D&A领导者都难以用业务术语阐明他们为组织提供的价值。组织的数据、分析和人工智能(AI)组合的价值优化需要一套集成的价值管理能力,包括价值故事话术、价值流分析、投资排名和优先排序,以及衡量业务成果以确保实现预期价值。
“D&A领导者必须通过构建价值故事来优化价值,这些故事在D&A计划与组织的关键任务优先事项之间可以建立起明确的联系,”Herschel说。
趋势2:管理AI风险
AI的日益普及使公司面临新的风险,例如道德风险、训练数据中毒或者欺诈检测规避等,这些风险必须得到缓解。管理AI风险不仅仅是要遵守法规,有效的AI治理和负责任的AI实践对于在利益相关者之间建立信任和促进AI的采用和使用来说,也是至关重要的。
趋势3:可观察性
可观察性是一种特性,有助于了解D&A系统的行为,并允许回答有关其行为的问题。
Herschel说:“可观察性让组织能够缩短确定影响性能问题根本原因的时间,以及使用可靠且准确的数据做出及时且具有成本效益的业务决策所需的时间。D&A领导者需要评估数据可观察性工具,以了解主要用户的需求,并确定这些工具是如何融入整个企业生态系统的。”
趋势4:数据共享必不可少
数据共享包括了内部(部门之间或者部门之间或者子公司之间)和外部(组织所有权和控制范围之外的各方之间)共享数据。组织可以创建“数据即产品”,其中将D&A资产作为一种可交付的产品或者共享的产品。
Gartner高级总监、分析师Kevin Gabbard表示:“数据共享协作,包括组织外部的协作,增加了可重复使用的、先前创建的数据资产来提高数据共享的价值。采用数据结构设计,使单一架构能够跨异构内部和外部数据源共享数据。”
趋势5:D&A可持续性
D&A领导者仅仅为企业ESG(环境、社会和治理)项目提供分析和洞察是不够的。D&A领导者还必须尝试优化自己的流程以提高可持续性。潜在的好处是巨大的。D&A和AI从业者越来越意识到他们的能源足迹正在不断增长。因此,出现了各种实践,例如(云)数据中心使用可再生能源、使用更节能的硬件、以及使用小数据和其他机器学习技术。
趋势6:实用的数据结构
Data Fabric是一种数据管理设计模式,利用所有类型的元数据来观察、分析和推荐数据管理解决方案。Data Fabric通过组装和丰富底层数据的语义,对元数据应用持续分析,以生成警报和建议,让人类和系统可以用于采取行动。Data Fabric让业务用户能够自信地使用数据,并促进技能较低的全民开发人员在集成和建模过程中变得更加灵活。
趋势7:新兴的AI
ChatGPT和生成式AI是新兴AI趋势的先锋。新兴AI将改变大多数企业在可扩展性、多功能性和适应性方面的运作方式。下一波AI浪潮将使企业组织能够在目前不可行的情况下应用AI,从而使AI变得更为普遍和具有价值。
趋势8:融合的、可组合的生态系统
融合的D&A生态系统设计和部署D&A平台,通过无缝集成、治理和技术互操作性紧密地运行和运作。生态系统的可组合性是通过构建、组装和部署可配置的应用和服务来实现的。
有了适当的架构,D&A系统就可以更加模块化,适应性更强,更灵活,可动态扩展并更加精简,以满足不断增长和变化的业务需求,并随着业务和运营环境不可避免的变化而发展。
趋势9:消费者成为创造者
用户花在预定义仪表盘上的时间占比,将被满足特定内容消费者时间点需求的对话式、动态和嵌入式用户体验所取代。
企业组织可以通过为内容消费者提供易于使用的自动化和嵌入式洞察力,以及他们成为内容创建者所需的对话体验,来扩大分析的采用和影响。
趋势10:人类仍然是关键决策者
并非每个决策都可以或者应该被自动化。D&A部门将明确他们给决策的支持,以及人类在自动化和增强决策制定中发挥的作用。
Herschel说:“如不考虑人类在决策中发挥的作用,那么推动决策自动化的努力将导致数据驱动型组织缺乏良知或者是始终如一的目标。组织的数据素养计划需要强调,数据和分析是要与人类决策相结合的。”
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。