近日,红帽发布了一系列公告,其中一项是对自动化软件配置和应用部署的Ansible ,新增了实时的、事件驱动的处理能力及AI前端。
OpenAI ChatGPT大型语言模型的成功,引发了业界对生成式AI的痴迷,在这一背景下,红帽推出了Ansible Lightspeed with IBM Watson Code Assistant。
红帽表示,这一新功能使Ansible新手用户更容易实现任务自动化,从而减轻了自动化专业人员创建低级任务的负担。用户可以使用英文命令生成Ansible Playbooks自动化任务列表中可以使用的YAML命令。
Ansible通过任务自动化并以代码形式部署,简化了IT基础设施的管理、配置管理和应用部署。这项新服务使用自然语言处理,集成了IBM的Watson Code Assistant,后者通过提供AI生成的建议来简化应用开发。该服务预计将在今年晚些时候全面上市。
弥合技能上的差距
红帽公司副总裁、Ansible总经理Tom Anderson表示:“技能差距很大且不断扩大,与此同时,IT运营团队需要以不同于以往的方式思考。他们的世界正变得越来越复杂,他们要应对越来越多的数据中心和边缘,试图使用旧的做法来管理新的复杂性,而这两件事并没有很好地匹配在一起。”
Anderson说,红帽母公司IBM自己的IT组织一直在使用Lightspeed,IT运营效率提高了60%。红帽认为,该技术对运营专业人员和最终用户都有好处。他说:“它确实有两个方面,提高现有员工的工作效率,并通过降低能力标准让更多人进入自动化的世界。”
事件驱动的Ansible将成为Ansible Automation Platform 2.4的标准部分,可用于对实时捕获的数据(例如事件日志和警报)采取措施,让IT操作员能够预先确定和定义规则,从而在系统进程无响应或者未经授权的访问请求等情况下触发自动操作。多个事件可以链接在一起形成更复杂的自动化操作。
有利于可观察性
Anderson说:“现在有大量的可观察性工具,而且正在变得越来越好,让我们可以轻松地将这些可观察性工具连接到Ansible自动化平台,以承担那些日常的、重复的任务,让您的运营团队腾出时间来解决创新的问题。”
红帽打算支持所有主流的可观察性平台,例如来自Dynatrace和Datadog的平台,以及支持主流的流媒体平台,例如Apache Kafka。
“我们已经创建了一个规则引擎和事件捕获,可以启动基于规则的工作流程,从而能够确定针对某种情况运行正确的剧本,大多数客户的事件经理已经将数十万个事件关联起来,并将其提炼成一个事件。他们能够通过规则手册将该事件传输到事件驱动的Ansible中,规则手册会说明应该运行哪个剧本。”
Anderson表示,Ansible的无代理事件驱动自动化在需要实时管理所谓边缘设备的车间环境中特别有用。“我们在收银机和售货亭周围的零售区以及石油钻井平台上做了大量工作,在很多用例中,企业并没有专门的IT人员来处理这些事情。”
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。