近日,红帽发布了一系列公告,其中一项是对自动化软件配置和应用部署的Ansible ,新增了实时的、事件驱动的处理能力及AI前端。
OpenAI ChatGPT大型语言模型的成功,引发了业界对生成式AI的痴迷,在这一背景下,红帽推出了Ansible Lightspeed with IBM Watson Code Assistant。
红帽表示,这一新功能使Ansible新手用户更容易实现任务自动化,从而减轻了自动化专业人员创建低级任务的负担。用户可以使用英文命令生成Ansible Playbooks自动化任务列表中可以使用的YAML命令。
Ansible通过任务自动化并以代码形式部署,简化了IT基础设施的管理、配置管理和应用部署。这项新服务使用自然语言处理,集成了IBM的Watson Code Assistant,后者通过提供AI生成的建议来简化应用开发。该服务预计将在今年晚些时候全面上市。
弥合技能上的差距
红帽公司副总裁、Ansible总经理Tom Anderson表示:“技能差距很大且不断扩大,与此同时,IT运营团队需要以不同于以往的方式思考。他们的世界正变得越来越复杂,他们要应对越来越多的数据中心和边缘,试图使用旧的做法来管理新的复杂性,而这两件事并没有很好地匹配在一起。”
Anderson说,红帽母公司IBM自己的IT组织一直在使用Lightspeed,IT运营效率提高了60%。红帽认为,该技术对运营专业人员和最终用户都有好处。他说:“它确实有两个方面,提高现有员工的工作效率,并通过降低能力标准让更多人进入自动化的世界。”
事件驱动的Ansible将成为Ansible Automation Platform 2.4的标准部分,可用于对实时捕获的数据(例如事件日志和警报)采取措施,让IT操作员能够预先确定和定义规则,从而在系统进程无响应或者未经授权的访问请求等情况下触发自动操作。多个事件可以链接在一起形成更复杂的自动化操作。
有利于可观察性
Anderson说:“现在有大量的可观察性工具,而且正在变得越来越好,让我们可以轻松地将这些可观察性工具连接到Ansible自动化平台,以承担那些日常的、重复的任务,让您的运营团队腾出时间来解决创新的问题。”
红帽打算支持所有主流的可观察性平台,例如来自Dynatrace和Datadog的平台,以及支持主流的流媒体平台,例如Apache Kafka。
“我们已经创建了一个规则引擎和事件捕获,可以启动基于规则的工作流程,从而能够确定针对某种情况运行正确的剧本,大多数客户的事件经理已经将数十万个事件关联起来,并将其提炼成一个事件。他们能够通过规则手册将该事件传输到事件驱动的Ansible中,规则手册会说明应该运行哪个剧本。”
Anderson表示,Ansible的无代理事件驱动自动化在需要实时管理所谓边缘设备的车间环境中特别有用。“我们在收银机和售货亭周围的零售区以及石油钻井平台上做了大量工作,在很多用例中,企业并没有专门的IT人员来处理这些事情。”
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。