IBM声称将通过定制化芯片降低云端的AI模型运行成本,从而把握目前ChatGPT等生成模型掀起的市场热潮、扩大自身获利空间。
各大科技企业近期显然都希望能利用ChatGPT引起的AI关注度,但从种种现状来看,这种关注似乎正有转弱的趋势。OpenAI网站的流量在5月至6月期间估计下降了10%。
IBM表示,正在考虑使用内部原研的定制化AI芯片来降低云端Watsonx服务的运营成本。
今年5月发布的Watsonx是一款由三种产品组成的套件,专为希望借基础模型和生成式AI之力自动化/加速工作负载处理的企业客户而设计,且均能够在多种公有云及本地设施上运行。
IBM公司的Mukesh Khare在接受路透社采访时称,该公司目前正计划使用名为人工智能单元(AIU)的芯片支持IBM Cloud上运行的Watsonx服务。谈到蓝色巨人之前在Watson系统上遭遇的失败,他将原因归结于成本过高,并声称通过AIU的引入,IBM将有望发挥这些芯片的高能效优势、降低云端AI处理成本。
AIU于去年10月首次亮相,是一款具有 32个处理核心的专用集成电路(ASIC)。IBM称其衍生自支持z16大型机设备的Telum芯片中的AI加速器版本,能够接入任意计算机或服务器上的PCIe插槽。
与此同时,亚马逊也表示希望通过价格竞争吸引更多客户使用其AWS云平台,并宣布将提供更低的AI模型训练和运营成本。
云巨头AWS应用副总裁Dilip Kumar表示,ChatGPT等服务背后的AI模型需要大量算力方可实现训练和运营。而亚马逊云科技多年来积累下的核心经验,正是如何持续降低这方面成本。
据估计,ChatGPT可能用到超过570 GB的数据集进行训练,且配合使用超1000个英伟达A100 GPU。
Kumar在此前于奥斯汀举办的Momentum大会上评论称,最新一代AI模型的训练成本明显相当高昂,“而我们一直在承载大量无差别繁重工作,希望能帮助客户降低运营成本。”
Kumar认为,已经有很多组织将数据存储在AWS当中,所以选择亚马逊的AI服务也就成了顺理成章的决定。毕竟如果要将数据发送至其他应用环境,客户还得额外支付数据出口费。
但也有部分专家认为,云服务商可能还没做好满足AI服务新需求的准备。《华尔街日报》指出,新一代生成式AI模型的体量往往是上代模型的10到100倍,而且需要GPU等加速器基础设施协助加快处理速度。
亚马逊AWS EC2产品管理总监Chetan Kapoor也承认,在公有云服务商运营的基础设施当中,只有一小部分属于配备此类加速器的高性能节点。由于处理AI任务离不开这些加速器的加持,所以“供需之间存在相当严重的失衡”。
但这并没有阻挡各家云服务商扩展AI产品的脚步。Kapoor表示,AWS打算在明年扩大其AI优化型服务器集群,而微软Azure和Google Cloud据说也将新增AI基础设施。
微软去年还宣布与GPU制造商英伟达建立合作伙伴关系,双方将共同为Azure增添数万个英伟达A100和H100 GPU,为基于GPU的服务器实例和英伟达AI软件栈提供支持。
就连VMware也不甘落后,本周公布最新计划,将让生成式AI运行在其平台之上。如此一来,客户将能够轻松在VMware环境中高效操作大语言模型,甚至灵活调动跨多种云的基础设施资源。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。