IBM声称将通过定制化芯片降低云端的AI模型运行成本,从而把握目前ChatGPT等生成模型掀起的市场热潮、扩大自身获利空间。
各大科技企业近期显然都希望能利用ChatGPT引起的AI关注度,但从种种现状来看,这种关注似乎正有转弱的趋势。OpenAI网站的流量在5月至6月期间估计下降了10%。
IBM表示,正在考虑使用内部原研的定制化AI芯片来降低云端Watsonx服务的运营成本。
今年5月发布的Watsonx是一款由三种产品组成的套件,专为希望借基础模型和生成式AI之力自动化/加速工作负载处理的企业客户而设计,且均能够在多种公有云及本地设施上运行。
IBM公司的Mukesh Khare在接受路透社采访时称,该公司目前正计划使用名为人工智能单元(AIU)的芯片支持IBM Cloud上运行的Watsonx服务。谈到蓝色巨人之前在Watson系统上遭遇的失败,他将原因归结于成本过高,并声称通过AIU的引入,IBM将有望发挥这些芯片的高能效优势、降低云端AI处理成本。
AIU于去年10月首次亮相,是一款具有 32个处理核心的专用集成电路(ASIC)。IBM称其衍生自支持z16大型机设备的Telum芯片中的AI加速器版本,能够接入任意计算机或服务器上的PCIe插槽。
与此同时,亚马逊也表示希望通过价格竞争吸引更多客户使用其AWS云平台,并宣布将提供更低的AI模型训练和运营成本。
云巨头AWS应用副总裁Dilip Kumar表示,ChatGPT等服务背后的AI模型需要大量算力方可实现训练和运营。而亚马逊云科技多年来积累下的核心经验,正是如何持续降低这方面成本。
据估计,ChatGPT可能用到超过570 GB的数据集进行训练,且配合使用超1000个英伟达A100 GPU。
Kumar在此前于奥斯汀举办的Momentum大会上评论称,最新一代AI模型的训练成本明显相当高昂,“而我们一直在承载大量无差别繁重工作,希望能帮助客户降低运营成本。”
Kumar认为,已经有很多组织将数据存储在AWS当中,所以选择亚马逊的AI服务也就成了顺理成章的决定。毕竟如果要将数据发送至其他应用环境,客户还得额外支付数据出口费。
但也有部分专家认为,云服务商可能还没做好满足AI服务新需求的准备。《华尔街日报》指出,新一代生成式AI模型的体量往往是上代模型的10到100倍,而且需要GPU等加速器基础设施协助加快处理速度。
亚马逊AWS EC2产品管理总监Chetan Kapoor也承认,在公有云服务商运营的基础设施当中,只有一小部分属于配备此类加速器的高性能节点。由于处理AI任务离不开这些加速器的加持,所以“供需之间存在相当严重的失衡”。
但这并没有阻挡各家云服务商扩展AI产品的脚步。Kapoor表示,AWS打算在明年扩大其AI优化型服务器集群,而微软Azure和Google Cloud据说也将新增AI基础设施。
微软去年还宣布与GPU制造商英伟达建立合作伙伴关系,双方将共同为Azure增添数万个英伟达A100和H100 GPU,为基于GPU的服务器实例和英伟达AI软件栈提供支持。
就连VMware也不甘落后,本周公布最新计划,将让生成式AI运行在其平台之上。如此一来,客户将能够轻松在VMware环境中高效操作大语言模型,甚至灵活调动跨多种云的基础设施资源。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。