IBM近日公布了第一财季财报,利润超出预期,收入略低于预期。
IBM提及了Red Hat混合云和AI这两个战略业务领域实现两位数的收入增长,同时表示,全球企业对AI的需求使得他们对IBM软件和咨询业务都有巨大的潜在上升空间。该季度Red Hat的收入同比增长11%,数据和AI收入同比增长10%。
该季度总收入较去年同期下降0.4%,至154.7亿美元,低于市场普遍预期的155.8亿美元。然而,每股收益2.18美元超出了分析师预期的2.01美元,但低于去年同期的每股收益2.31美元。
该季度IBM的毛利率为54.9%,同比增长1.6%;营业利润率增长1.4%,达到55.9%。IBM高管们重申,今年预期收入增长在3%至5%之间,并称这两个指标是2023年的关键绩效指标。
财报发布后,IBM股价在盘后交易中下跌略高于1%。
“扎实的执行力”
IBM公司首席执行官Arvind Krishna(如图)表示:“我们AI和混合云战略持续扎实的执行力,使得我们对实现全年自由现金流和收入预期充满信心。”
IBM报告称,按固定汇率计算,该季度软件收入增长了8%,其中咨询收入增长了6%,基础设施收入下降了14%。IBM公司首席财务官James Kavanaugh表示:“我们的基础运营产品业绩表现良好。”
他表示,尽管基础设施收入下降了14%,与正常的大型机产品周期一致,但IBM看到在线交易处理市场展现出异常的弹性。他说:“我们在2022年看到OLTP出现拐点性的转变,我们有广泛的机会基础来获得这些收入。”
Constellation Research首席分析师Holger Mueller表示:“IBM正面临着经济放缓和货币汇率发展挑战的双重不利因素。但好消息是,Red Hat保持了11%的增长,另一方面数据和AI产品组合的强劲势头也给IBM带来了增长。”
Pundit-IT首席分析师Charles King也认为IBM的战略产品表现不错。他说:“Red Hat继续提供软件产品,也是IBM混合云战略和解决方案的核心,最好的消息是IBM的大型企业和小型企业客户咨询签约量同比增长了24%。”
生成式AI带来的机会
IBM高管表示,市场对生成式AI的兴趣,对于IBM来说是重大利好。Krishna表示,他“非常兴奋地”看到市场对5月份IBM推出的WatsonX的最初反应。WatsonX是一款旨在帮助企业更轻松地构建和部署AI模型的产品套件。
Krishna把WatsonX比作Red Hat的OpenShift,后者是在2019年首次推出的,每年收入大约翻一番。他说:“OpenShift的年化运行率量是11亿美元,它让你感受到我们对这些AI项目有多兴奋。”
分析师King对此表示认同,他表示,有超过150家客户参与了WatsonX平台的开发,并“表明对企业级生成式AI解决方案的需求将会十分强劲。”
尽管Watson AI平台自《危险边缘》中获胜以来,市场表现并不理想。十多年前,IBM很大程度上可以被视为AI市场的领导者,“该公司已经系统地解决了阻碍新AI平台的大多数严重问题。”
他特别指出了IBM在开发大型语言模型工具和数据集、解决数据隐私和安全问题、以及建立一套AI开发中遵循的道德标准方面所做的工作。他说:“IBM在AI方面所做的努力,特别是在生成充满错误的报告和学期论文方面可能并不为人所知,但IBM正在稳步添加支持AI的特性和功能,显着改进企业客户所依赖的应用和解决方案的性能。”
Krishna表示,全球对AI的兴趣十分浓厚,其中北美、西欧和南美部分地区处于领先地位。“AI的用例包括IT运营、改进自动化、客户服务、增强人力资源、预测性维护、合规性监控、安全、销售、管理和供应链等。就像我们围绕Red Hat打造了规模数十亿美金的咨询业务一样,我们也会对AI采取同样的策略。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。