Oracle 宣布推出 MySQL HeatWave Lakehouse,让客户能够像在数据库内查询数据一样快地查询对象存储中的数据。MySQL HeatWave Lakehouse支持各种文件格式(例如 CSV、Parquet)和从其他数据库导出的文件,并且可以在同一查询中将对象存储文件数据与 MySQL 数据库中的数据相结合。对象存储中的文件由 HeatWave 直接查询,而无需将数据复制到 MySQL 数据库中。因此,在对象存储中查询数据方面,MySQL HeatWave Lakehouse 为查询处理、数据加载速度、集群预配时间和自动化奠定了新的可扩展性和性能标准。
甲骨文公司首席企业架构师 Edward Screven 表示:“超过 80% 的数据存储在文件系统中,该数字还在不断增长。客户希望将各种外部数据与内部事务处理数据集成和分析,但处理起来往往过于复杂或成本太高。MySQL HeatWave Lakehouse 能够帮助客户将对象存储中的数据与数据库数据结合在一起,让客户能够轻松获得宝贵的实时洞察,同时显著提高查询性能并降低数据加载速度。”
对象存储中的数据查询速度,与数据库中的数据查询速度一样快
如 10 TB TPC-H* 基准测试所示,使用 MySQL HeatWave Lakehouse 以常用文件格式查询对象存储中的数据的速度,与在 MySQL 数据库中查询数据的速度一样快。这是因为 MySQL HeatWave 的内置功能 MySQL Autopilot 提供了基于机器学习的自动化,可以从查询执行中学习,并改进未来查询的执行计划。MySQL Autopilot 是 MySQL HeatWave 一项特别的创新功能。基于 Oracle 云基础设施远程软件服务(Oracle Cloud Infrastructure, OCI)的 MySQL HeatWave 采用 AMD EPYC™ 处理器。
AMD 数据中心解决方案业务小组执行副总裁兼总经理 Forrest Norrod 表示:“AMD 和 MySQL HeatWave 工程团队正在密切合作,合力优化 AMD EPYC 处理器与 MySQL HeatWave 的性能,以利用新的处理器功能。得益于本次合作,在 AMD EPYC CPU 驱动的 OCI 实例上运行 MySQL HeatWave 的 MySQL 客户可在关键业务工作负载方面获得较为突出的性价比,其中包括针对海量对象存储数据的实时分析。”
数据湖仓一体的查询性能十分亮眼
MySQL HeatWave 的性能源自于其横向扩展架构,该架构支持通过大规模并行来配置集群、加载数据和处理高达 512 个节点的查询。此外,MySQL Autopilot 的增强功能可自动为对象文件创建元数据,并动态适应底层对象存储的性能,确保在 OCI 区域中都能提供出色的性能。
MySQL HeatWave 是重要的云端服务,可在单一的 MySQL 数据库服务中提供事务处理、实时分析、机器学习、数据池查询和基于机器学习的自动化功能。作为 Oracle Distributed Cloud 策略的核心,MySQL HeatWave 在 OCI 中提供,在 Amazon Web Services 中原生提供,作为 Oracle Database Service for Azure 的一部分提供,以及通过 OCI Dedicated Region 在客户数据中心内提供。
好文章,需要你的鼓励
生成式人工智能在制药业中的应用正逐步落地。尽管面临数据隐私、合规等挑战,但通过分阶段实施、聚焦用例族等策略,制药公司可以加速采用生成式人工智能,提高效率和洞察力,最终实现从炒作到广泛应用的转变,为行业带来变革性影响。
研究显示,未来三年铁路移动通信系统(FRMCS)的累计支出将大幅增长,预计到2027年达到12亿美元。随着公共交通运营商逐渐转向使用关键任务LTE网络,以替代老旧的GSM-R系统,私有5G和4G LTE网络在铁路行业的应用正迅速普及。亚洲是铁路行业连接技术的关键地区之一,多个国家已部署大规模LTE和5G网络用于列车控制、视频监控等应用。
本文汇总了2024年欧洲、中东和非洲(EMEA)地区的重要科技动态。重点关注欧盟为打造数字单一市场、应对美国科技巨头挑战所做的努力,以及中东地区在科技领域的投资与发展。文章还涉及人工智能、智慧城市、关键基础设施安全等热点话题,反映了EMEA地区在科技创新与监管方面的最新进展。
Omnisend对1000名美国消费者进行的调查显示,在节日季购物者寻找价格低廉的商品时,36%的人将目光转向了中国市场,48%的Z世代消费者在中国线上平台购物。