微软团队,包括 TypeScript 创始人 Anders Heljsberg 在内,推出 TypeChat,旨在解决自然语言界面开发过程中面临的复杂问题。
发布新库的文章中表示,目前的 LLM(大语言模型的英文缩写)默认使用会话式自然语言,即诸如英语一类的人类交流时使用的语言。而解析自然语言是一项极其困难的任务。
TypeChat 基于 TypeScript 类型。TypeChat 库可以为 LLM(大语言模型)人工智能(如 OpenAI 的 ChatGPT)构建提示,要求LLM以符合类型的方式返回数据。如果回复未能通过验证,TypeChat会尝试通过进一步的交互进行修复。最终TypeChat 会对交互进行总结,以便在采取任何行动前进行确认。数据将以 JSON 格式传输,文档指出,由于“许多语言模型都擅长生成 JSON”。
微软团队提供的示例包括用户输入的情感分析、咖啡馆或餐厅的订餐、日历安排、数学计算以及在 Spotify 上播放音乐。
据称好处是准确性更高、编程更容易上手,另外,由于类型限制了人工智能的响应,因此安全性也更高一些。
OpenAI 几周前曾推出“新的Chat Completions API 中函数调用功能”。函数调用功能使得开发人员能够“在调用模型时通过 JSON 模式描述函数”,还可以令 LLM 输出一些带参数的 JSON 去调用这些函数。TypeChat 的想法并无不同,因为这意味着 LLM 的输出可以与开发人员的代码进行整合。
这样一来 TypeChat会不会是多余的呢?这个问题有人已经在 TypeChat 的 GitHub 仓库上提出过。但毫无疑问一部分的答案是,TypeChat旨在与任何 LLM 配合使用,而不仅仅是配合 OpenAI使用。尽管目前团队提供的所有示例都是在 OpenAI 或 Azure OpenAI 端点上运行,但考虑到微软与 OpenAI 的密切关系,这也就不足为奇了。
开发者的反应各不相同,有的说“迫不及待想试试 ”,也有的说“LLM就是专门生成自然语言输出,为什么我们要从这样的输出获取结构化输出呢?”另外其实已经有很多其他项目也是在解决同样的问题,尤其是微软自己的 Guidance 项目。
不过,TypeChat 的吸引力在于,数百万的开发者已经颇为熟悉TypeScript,而且TypeChat背后的团队包括 Hejlsberg 以及 TypeScript 高级项目经理 Daniel Rosenwasser、技术研究员 Steve Lucco 等资深人士。
真正的问题或许在于,到目前为止该项目带着浓厚的微软和 OpenAI 色彩,这可能会有碍于TypeChat团队希望的被厂商中立采用。
好文章,需要你的鼓励
许多CIO在实施AI战略时因良好初衷反而导致失败。专家指出,仅为AI而做AI会浪费资金且无实际成果,应先评估业务价值。CIO常见错误包括:让风险规避型利益相关者施加过度限制、仅依赖现成AI工具而不深度整合、在人员和流程问题未解决时强推技术转型。成功的关键是确保AI解决方案真正节省时间并带来业务价值,需要有权威的负责人推动决策,同时不惧怕小规模试错,快速迭代改进。
谷歌研究院开发出一种革命性的人工智能技术,通过学习人类眼动轨迹来提升视觉问答能力。该技术像训练侦探一样教会AI关注图像中的关键区域,准确率提升3-10%。研究发表于CVPR 2024,在教育、医疗、无人驾驶等领域具有广阔应用前景,为AI向人类智慧靠近开辟了新路径。
Kahoot是一个基于游戏的学习平台,涵盖科学、历史、地理、英语和数学等领域。该平台于2023年推出AI功能,AI生成器可从主题、文档、网站或视频链接即时创建互动学习体验,帮助教师减少备课时间,让学习更具吸引力和个性化。平台支持50种语言,拥有120亿用户,还提供翻译工具和AI驱动的学习推荐功能。
英国卡迪夫大学研究团队通过脑电图技术发现,当人们体验虚假听觉(即"听到"实际不存在的语音)时,大脑的神经活动模式与听到真实声音时几乎相同。研究揭示了大脑会根据语言经验和上下文自动"填补"缺失的语音片段,这一发现对理解听觉障碍、改进助听设备以及开发更智能的语音识别系统具有重要意义。