庆应义塾大学SFC研究所(KRIS)与软银公司的先进技术研究所正合作开发新项目,为自动驾驶构建模型。
2023年5月,软银与SFC研究所宣布推出概念验证,用于增强东京南部藤泽市庆应义塾大学湘南藤泽校区(SFC)的自动驾驶班车运营。此项概念验证成果的独特之处,在于其用到了数字孪生——一种将物理世界重现为数字副本形式的技术手段。
数字孪生:先进自动驾驶的关键一环
实验室。在拥有独立5G网络的校园内,物理世界中的信息和事件将通过图像识别和空间传感技术在虚拟空间中进行数字化转换和共享。基于该数字孪生平台的各类研究与开发项目也在推进当中,而面向自动驾驶班车的高级运营概念验证就是其中之一。
除了车载摄像头和传感器外,园区周边还安装有六个用于获取信息的传感器,另有摄像头负责捕捉交通灯信号数据。在验证如何将这些数据集同数字孪生结合使用的同时,软银和SFC研究所也在利用它们真正推动自动驾驶进步。
自动驾驶需要诸多控制要素
在概念验证当中,本次测试完成了两项工作:
(1)在右转时,检测迎面驶来的车辆;(2)对交通信号做出预测。
右转时检测对向车辆
SFC校区的行驶路线包含直行道、右转道和弯道等。为了提升自动驾驶的实际表现,必须收集关于周边环境的大量数据。例如,仅通过安装在车辆上的摄像头,并无法检测远距离驶来的车辆状态。但通过接收来自数字孪生平台的信息,自动穿梭巴士系统就能提前对远端交通状况做出评估,甚至接收有多少人在场、他们如何移动以及是否有车辆从远处驶来的预报数据。这就让先进自动驾驶和提前避险成为了现实。
过去,右转只能由驾驶员在目视检查之后手动操作。但在本次概念验证中,只有在通过数字孪生副本提供的车辆和行人信息并确认安全之后,系统才会执行自动右转操作。这就有效解决了车载传感器无法检测远处对向来车的弊端。
交通信号预测
对自动驾驶而言,车辆提前了解交通信号灯何时转红或转绿,对于确保乘坐舒适性和安全性至关重要。例如,若能够预测交通灯何时变红,则可自动调整减速时间以防止紧急刹车。此外,如果能分析此前交通信号灯数据来预测指示转换的具体时长,车辆就能提前减速以避免在十字路口前突然制动。
但受背灯等原因的影响,安装在车辆上的摄像头有时无法准确检测到交通信号信息。
在本次概念验证中,研究人员采用AI对SFC园区周边拍摄的信号图像来预估交通灯信息,并将结果与自动穿梭巴士共享。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。