庆应义塾大学SFC研究所(KRIS)与软银公司的先进技术研究所正合作开发新项目,为自动驾驶构建模型。
2023年5月,软银与SFC研究所宣布推出概念验证,用于增强东京南部藤泽市庆应义塾大学湘南藤泽校区(SFC)的自动驾驶班车运营。此项概念验证成果的独特之处,在于其用到了数字孪生——一种将物理世界重现为数字副本形式的技术手段。
数字孪生:先进自动驾驶的关键一环
实验室。在拥有独立5G网络的校园内,物理世界中的信息和事件将通过图像识别和空间传感技术在虚拟空间中进行数字化转换和共享。基于该数字孪生平台的各类研究与开发项目也在推进当中,而面向自动驾驶班车的高级运营概念验证就是其中之一。
除了车载摄像头和传感器外,园区周边还安装有六个用于获取信息的传感器,另有摄像头负责捕捉交通灯信号数据。在验证如何将这些数据集同数字孪生结合使用的同时,软银和SFC研究所也在利用它们真正推动自动驾驶进步。
自动驾驶需要诸多控制要素
在概念验证当中,本次测试完成了两项工作:
(1)在右转时,检测迎面驶来的车辆;(2)对交通信号做出预测。
右转时检测对向车辆
SFC校区的行驶路线包含直行道、右转道和弯道等。为了提升自动驾驶的实际表现,必须收集关于周边环境的大量数据。例如,仅通过安装在车辆上的摄像头,并无法检测远距离驶来的车辆状态。但通过接收来自数字孪生平台的信息,自动穿梭巴士系统就能提前对远端交通状况做出评估,甚至接收有多少人在场、他们如何移动以及是否有车辆从远处驶来的预报数据。这就让先进自动驾驶和提前避险成为了现实。
过去,右转只能由驾驶员在目视检查之后手动操作。但在本次概念验证中,只有在通过数字孪生副本提供的车辆和行人信息并确认安全之后,系统才会执行自动右转操作。这就有效解决了车载传感器无法检测远处对向来车的弊端。
交通信号预测
对自动驾驶而言,车辆提前了解交通信号灯何时转红或转绿,对于确保乘坐舒适性和安全性至关重要。例如,若能够预测交通灯何时变红,则可自动调整减速时间以防止紧急刹车。此外,如果能分析此前交通信号灯数据来预测指示转换的具体时长,车辆就能提前减速以避免在十字路口前突然制动。
但受背灯等原因的影响,安装在车辆上的摄像头有时无法准确检测到交通信号信息。
在本次概念验证中,研究人员采用AI对SFC园区周边拍摄的信号图像来预估交通灯信息,并将结果与自动穿梭巴士共享。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。