庆应义塾大学SFC研究所(KRIS)与软银公司的先进技术研究所正合作开发新项目,为自动驾驶构建模型。
2023年5月,软银与SFC研究所宣布推出概念验证,用于增强东京南部藤泽市庆应义塾大学湘南藤泽校区(SFC)的自动驾驶班车运营。此项概念验证成果的独特之处,在于其用到了数字孪生——一种将物理世界重现为数字副本形式的技术手段。
数字孪生:先进自动驾驶的关键一环
实验室。在拥有独立5G网络的校园内,物理世界中的信息和事件将通过图像识别和空间传感技术在虚拟空间中进行数字化转换和共享。基于该数字孪生平台的各类研究与开发项目也在推进当中,而面向自动驾驶班车的高级运营概念验证就是其中之一。
除了车载摄像头和传感器外,园区周边还安装有六个用于获取信息的传感器,另有摄像头负责捕捉交通灯信号数据。在验证如何将这些数据集同数字孪生结合使用的同时,软银和SFC研究所也在利用它们真正推动自动驾驶进步。
自动驾驶需要诸多控制要素
在概念验证当中,本次测试完成了两项工作:
(1)在右转时,检测迎面驶来的车辆;(2)对交通信号做出预测。
右转时检测对向车辆
SFC校区的行驶路线包含直行道、右转道和弯道等。为了提升自动驾驶的实际表现,必须收集关于周边环境的大量数据。例如,仅通过安装在车辆上的摄像头,并无法检测远距离驶来的车辆状态。但通过接收来自数字孪生平台的信息,自动穿梭巴士系统就能提前对远端交通状况做出评估,甚至接收有多少人在场、他们如何移动以及是否有车辆从远处驶来的预报数据。这就让先进自动驾驶和提前避险成为了现实。
过去,右转只能由驾驶员在目视检查之后手动操作。但在本次概念验证中,只有在通过数字孪生副本提供的车辆和行人信息并确认安全之后,系统才会执行自动右转操作。这就有效解决了车载传感器无法检测远处对向来车的弊端。
交通信号预测
对自动驾驶而言,车辆提前了解交通信号灯何时转红或转绿,对于确保乘坐舒适性和安全性至关重要。例如,若能够预测交通灯何时变红,则可自动调整减速时间以防止紧急刹车。此外,如果能分析此前交通信号灯数据来预测指示转换的具体时长,车辆就能提前减速以避免在十字路口前突然制动。
但受背灯等原因的影响,安装在车辆上的摄像头有时无法准确检测到交通信号信息。
在本次概念验证中,研究人员采用AI对SFC园区周边拍摄的信号图像来预估交通灯信息,并将结果与自动穿梭巴士共享。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
保加利亚研究团队通过创新的双语训练方法,成功让AI模型学会了在非英语环境下使用外部工具。他们开发的TUCAN模型在保加利亚语功能调用任务上实现了显著提升,小模型改进幅度达28.75%。更重要的是,团队开源了完整的方法论,为全球多语言AI工具使用能力的发展提供了可复制的解决方案。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
清华大学团队开发了首个能同时理解街景、卫星图、轨迹和地理数据的城市AI系统UrbanLLaVA。通过创新的三阶段训练法和多模态融合技术,该系统在十二项城市任务测试中显著超越现有方法,为智慧城市、导航服务、城市规划等领域带来突破性进展,代码已开源。