庆应义塾大学SFC研究所(KRIS)与软银公司的先进技术研究所正合作开发新项目,为自动驾驶构建模型。
2023年5月,软银与SFC研究所宣布推出概念验证,用于增强东京南部藤泽市庆应义塾大学湘南藤泽校区(SFC)的自动驾驶班车运营。此项概念验证成果的独特之处,在于其用到了数字孪生——一种将物理世界重现为数字副本形式的技术手段。
数字孪生:先进自动驾驶的关键一环
实验室。在拥有独立5G网络的校园内,物理世界中的信息和事件将通过图像识别和空间传感技术在虚拟空间中进行数字化转换和共享。基于该数字孪生平台的各类研究与开发项目也在推进当中,而面向自动驾驶班车的高级运营概念验证就是其中之一。
除了车载摄像头和传感器外,园区周边还安装有六个用于获取信息的传感器,另有摄像头负责捕捉交通灯信号数据。在验证如何将这些数据集同数字孪生结合使用的同时,软银和SFC研究所也在利用它们真正推动自动驾驶进步。
自动驾驶需要诸多控制要素
在概念验证当中,本次测试完成了两项工作:
(1)在右转时,检测迎面驶来的车辆;(2)对交通信号做出预测。
右转时检测对向车辆
SFC校区的行驶路线包含直行道、右转道和弯道等。为了提升自动驾驶的实际表现,必须收集关于周边环境的大量数据。例如,仅通过安装在车辆上的摄像头,并无法检测远距离驶来的车辆状态。但通过接收来自数字孪生平台的信息,自动穿梭巴士系统就能提前对远端交通状况做出评估,甚至接收有多少人在场、他们如何移动以及是否有车辆从远处驶来的预报数据。这就让先进自动驾驶和提前避险成为了现实。
过去,右转只能由驾驶员在目视检查之后手动操作。但在本次概念验证中,只有在通过数字孪生副本提供的车辆和行人信息并确认安全之后,系统才会执行自动右转操作。这就有效解决了车载传感器无法检测远处对向来车的弊端。
交通信号预测
对自动驾驶而言,车辆提前了解交通信号灯何时转红或转绿,对于确保乘坐舒适性和安全性至关重要。例如,若能够预测交通灯何时变红,则可自动调整减速时间以防止紧急刹车。此外,如果能分析此前交通信号灯数据来预测指示转换的具体时长,车辆就能提前减速以避免在十字路口前突然制动。
但受背灯等原因的影响,安装在车辆上的摄像头有时无法准确检测到交通信号信息。
在本次概念验证中,研究人员采用AI对SFC园区周边拍摄的信号图像来预估交通灯信息,并将结果与自动穿梭巴士共享。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。