IBM和NASA近日发布了一款人工智能模型,帮助研究人员更快地分析卫星数据。

该模型在Hugging Face上提供,这是一个类似GitHub的流行平台,用于共享开源神经网络。IBM和NASA的下一阶段合作将重点把AI能力扩展到更多用例中,并与马萨诸塞州伍斯特市的克拉克大学合作开展该计划。
IBM研究院AI副总裁Sriram Raghavan表示:“开源技术加速了气候变化等关键领域的发现。”
IBM表示,这种新模型旨在帮助研究人员识别美国大陆可能面临洪水和野火风险的地区,并且分析地理空间数据的速度要比最先进的神经网络快四倍,训练所需的数据也更少。
IBM把这种AI称为一个基础模型,或者说是一个可以执行各种高级计算任务的模型。它基于Transformer架构,一种流行的神经网络设计方法。Transformer模型在推理一段数据时可以考虑大量上下文信息,这使其能够比其他AI系统做出更准确的决策。
这项技术支撑着市场上许多先进的AI系统,其中就包括OpenAI最新的大型语言模型GPT-4。
IBM和NASA在名为Harmonized Landsat Sentinel-2的地理空间数据集上联合训练了他们的模型,这个数据集包括由NASA Landsat-8 卫星拍摄的地球表面图像,以及来自欧洲航天局运营的卫星星座Sentinel-2的测量数据。
IBM使用其内部开发的Vela超级计算机训练这个AI模型。今年早些时候IBM推出的这套系统采用了Nvidia的A100系列数据中心图形芯片,Vela使用的是A100高端版本,具有特别大的板载内存池,用于存储AI模型。
除了Nvidia的芯片之外,Vela超级计算机还配备了IBM开发的虚拟化软件。虚拟化使某些AI开发任务变得更加容易,但这种简单性是以降低处理能力为代价的,不过IBM表示,它将性能影响降低到了5%以下,研究人员将其描述为“我们所知业内最低的开销”。
尽管IBM和NASA优化了他们的模型来检测有洪水和野火风险的区域,但他们估计该模型也可以适用于其他用例,例如跟踪森林砍伐行为,以及帮助研究人员监测碳排放并预测作物产量。
未来,IBM计划进一步扩展AI功能,IBM已经在与NASA和克拉克大学的研究人员合作进行这项工作。
在该计划中,IBM希望优化时间序列分割和相似性研究的模型,这是两种主流的数据分析方法,不仅用于地理空间研究,还用于一系列其他任务,例如,时间序列分割可用于研究股票价格波动的原因。
IBM最终计划通过Watsonx产品套件提供该模型的商业版本。Watsonx产品套件是在今年5月推出的,其中包括了一系列软件工具,旨在帮助企业构建先进的AI模型并将其部署到生产中,此外还有针对各种用例进行优化的预打包神经网络。
Watsonx是由Red Hat OpenShift AI提供支持的,后者是IBM机器学习产品组合中最近推出的另一个组件,是OpenShift应用开发和部署平台的一个版本,专门针对AI工作负载进行了优化,简化了监控生产中运行的机器学习模型的性能等任务。
好文章,需要你的鼓励
虽然在CES 2026展会上需要仔细寻找才能发现Linux的身影,但它确实无处不在。Canonical展示了与英伟达合作的Ubuntu Linux桌面超级计算机,配备GB10芯片、128GB内存和4TB存储。公司还演示了Ubuntu Core在IoT设备中的应用,以及为应对欧盟网络韧性法案推出的Ubuntu Pro设备支持方案。此外,Linux正成为软件定义汽车、边缘AI和智能电视的默认平台。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
智能白板制造商Vibe发布桌面AI设备Vibe Bot,集成语音助手、智能摄像头和AI笔记功能。该设备采用圆柱形设计,配备4K摄像头、波束成形麦克风和可旋转屏幕,能够跟踪发言者并自动调整视角。支持在线和离线会议录音,提供实时转录和AI生成的会议纪要,用户可通过语音助手查询会议信息并触发日历等应用操作。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。