IBM研究员发表了一篇论文,介绍了将模拟计算用于人工智能(AI)的突破。
在构建人工智能系统的时候,需要对数据模型进行训练。就是对训练数据的不同子集赋予不同的权重,例如描述猫不同特征的图像数据。
在传统(数字)计算机上训练人工智能系统时,人工智能模型分散存储在内存中。计算任务需要在内存和处理单元之间不断传递数据。IBM 表示,这一过程会减慢计算速度,并限制能够实现的能效上限。
将模拟计算用于人工智能,可能会提供一种更有效的方法,实现同数字计算机上运行的人工智能相同的结果。IBM将模拟内存计算或模拟人工智能定义为一种借鉴生物大脑神经网络运行方式关键特征的技术。研究人员表示,在人类和许多其他动物的大脑中,突触的强度(称为权重)决定了神经元之间的通信。
IBM表示,在模拟人工智能系统中,这些突触权重被就地存储在相变存储器(PCM)之类的纳米级电阻存储器件的电导值中。然后,它们在深度神经网络中被用于进行累积乘法运算。
IBM表示,这项技术可以减少在存储器和处理器之间不断发送数据的需求。
在发表于《自然-电子学》(Nature Electronics)的一篇论文中,IBM研究院介绍了一种混合信号模拟人工智能芯片,可运行各种深度神经网络(DNN)推理任务。据IBM 称,这是首款在测试中执行计算机视觉AI任务方面与数字芯片不相上下的模拟芯片,而且能效比后者更高。
该芯片是在IBM的奥尔巴尼纳米技术中心制造的。它由64个模拟内存计算内核(或芯片)组成,每个内核包含一个256 x 256的突触单元交叉阵列。IBM表示,每个芯片中都集成了基于时间的模数转换器,用于在模拟数据和数字数据之间转换。每个芯片还集成了轻量级数字处理单元,IBM 称这些处理单元可执行非线性神经元激活功能和缩放操作。
IBM表示,每块芯片都可以执行一层DNN模型相关的计算。论文作者表示:“利用该芯片,我们对模拟内存计算的计算精度进行了最全面的研究,并在CIFAR-10图像数据集上实现了92.81%的精确度。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。