最近发表在《柳叶刀:肿瘤学》上的一项研究,调查了通过乳房X光片检测乳腺癌的能力,并比较了AI加一名放射科医生同两名具有多年临床经验的资深医生间的诊断差异。在瑞典进行的这项首个同类随机对照试验中,超过8万名女性拍摄了X光片以参与乳腺癌检查。
在近16个月时间里,AI支持的X光片检查稍微提高了癌症检出率,最终比例为千分之六;而在由两名放射科医生纯手动检查的情况下,受试女性们的癌症检出率为千分之五。此外,研究中两组(AI辅助筛查组与无AI辅助筛查组)的假阳性率(即根据X光片诊断患有乳腺癌,但实际上并不存在)相似。
尽管此项研究并没有明确衡量放射科医生使用AI所能节约的时间,但作者推测放射科医生的工作量可以因此减少达44%。
鉴于AI有可能改变乳腺成像的实现方式、甚至是癌症检测方式,我们当然有必要了解其中的实现原理。以下,就是AI加持并增强乳腺成像的五种具体方式。
数据显示,从40岁开始每年接受胸部X光乳腺癌筛查能够拯救生命。与不接受筛查相比,死亡率可降低达40%。《柳叶刀:肿瘤学》的这篇研究文章也提到,与无AI辅助筛查相比,AI辅助胸部X光片检查能够多发现一种癌症。考虑到接受胸部拍片筛查的女性高达数百万,这将挽救几千人的生命。医疗保健系统和医生一直在努力为患者提供最为有效的护理,而AI无疑可以协助达成这个目标。
《柳叶刀:肿瘤学》上的研究表明,如果放射科医生能将AI纳入胸部X光检查流程当中,则其工作量可以减少达44%。在瑞典,筛查性胸部X光检查需要由两名放射科医生分别进行,但在美国的情况则不一样,只要单独一名放射科医生即可做出诊断。因此对美国的执业放射科医生来说,工作时间方面的节省可能没那么显著,不过帮助效果肯定存在。其他发表的研究也基本支持这个结论,认为在AI技术的协助下,乳腺放射科医生在筛查胸部X光片能够减少达40%的工作量。如果事实确实如此,那么乳腺放射科医生就能提高自身工作效率、有更多时间完成其他任务,例如与患者交互和沟通。
对于放射科医生来说,通过胸部X光筛查来检测癌症绝非易事。胸部X光片上乳腺癌部位的密度与正常乳腺组织非常相似,因此这种X光筛查会漏掉近20%的乳腺癌也就不奇怪了。如果AI能够帮助检测乳腺癌,肯定会受到放射科医生和患者群体的热烈欢迎。此外,当放射科医生不太确定是否属于病变、但AI工具将其诊断为癌症的情况下,这项技术相当于增强了放射科医生的信心。通过这种方式,AI将为放射科医生对X光片的解释能力赋予巨大的价值。
医生,特别是乳腺放射科医生,发生身心倦怠问题的比例其实相当惊人。在乳腺影像学会对全球乳腺放射科医生进行的一项调查中,超过78%的参与者报告了至少一个可以量化的倦怠维度。众所周知,过去二十年来不断增加的工作量,成为放射科医生陷入倦怠和压力的主要原因。如果AI技术能够提高放射科医生的工作效率,并缩短诊断和解释(例如胸部X光片检查)的时间,那AI真的有可能帮助乳腺放射科医生缓解这种普遍存在的倦怠与疲惫情绪。
AI还可以让乳腺放射科医生在解读图像时跳出原本的条条框框。AI有可能提出某些诊断结论,帮助解读时没有想到这些的放射科医生打开思路。通过这种方式,AI将逐步培养放射科医生的创造力,引导他们在解释结果时考虑到更多情况。
AI在医学领域有着巨大的应用空间,特别是在乳腺成像领域已经建立起多个实用方向。在讨论AI时,纽约大学朗格尼健康中心珀尔穆特癌症中心的乳腺放射科医生Laura Heacock博士表示,“它之于放射科医生,就如同听诊器等工具之于心脏病专家。”
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
Google DeepMind最新研究发现,视频生成AI模型Veo 3展现出惊人的零样本学习能力,能够在未经专门训练的情况下完成图像分割、边缘检测、迷宫求解等多种视觉任务。研究团队通过18,384个视频样本验证了这一发现,认为视频模型正朝着通用视觉智能方向发展,可能引发类似大语言模型的行业变革。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
北航团队开发的GeoSVR技术突破了传统3D重建方法的局限,采用稀疏体素表示和体素不确定性评估,无需依赖初始点云即可实现高精度表面重建。该方法通过智能的深度约束和体素协同优化策略,在DTU等标准数据集上取得了最佳性能,为VR/AR、文物保护、影视制作等领域提供了新的技术选择。