IBM近日推出新的Granite系列语言模型阵容,该系列将作为IBM watsonx产品套件的一部分提供给用户。
Granite系列是与其他几个新功能一起推出的。据IBM称,watsonx将增加一款新的工具可以让企业更轻松地创建AI训练数据集,另一项新增功能则会让神经网络更容易适应新的任务。
IBM在今年5月推出了watsonx软件产品,旨在帮助企业构建生成式AI模型,并有望简化例如确保神经网络满足安全要求等相关任务。
IBM这次推出的Granite模型将通过watsonx一个名为watsonx.ai的组件提供给用户。据IBM公司称,后者提供的工具可以更轻松地构建定制神经网络。此外,Watsonx.ai还包括了一系列预先打包的AI模型,这些模型将在本季度晚些时候通过Granite系列得到增强。
Granite系列包括了两种语言模型,分别是Granite.13b.instruct和Granite.13b.chat。IBM 表示,这两种语言模型可以总结文档、执行“洞察提取”以及生成文本,是IBM工程师通过2.4 TB训练数据集构建的。
这两个Granite模型都有130亿个参数,这使其足够紧凑,可以运行在Nvidia单个V100 GPU上。V100比Nvidia的旗舰产品H100要便宜得多,因此从理论上讲,Granite系列应该比那些需要更复杂硬件才能运行的大型语言模型更容易部署。
IBM公司软件高级副总裁Dinesh Nirmal在今天的博客文章中这样写道:“最初的Granite模型只是一个开始:更多的模型还将采用其他语言,更多IBM训练的模型也在准备之中。”
除了Granite系列之后,IBM还在watsonx.ai上推出了两个开源AI模型。第一个是Llama-2,这是Meta Platforms的通用大型语言模型;以及StarCoder,这是ServiceNow和Hugging Face在5月份发布的针对编程任务优化的神经网络。
除了更大的预打包神经网络目录之外,最新版本的watsonx.ai还包括了新的人工智能开发功能。
创建自定义人工智能模型往往需要大量的训练数据。在很多情况下,手动聚合这些信息可能需要大量的时间和精力,企业简化这个工作流程的方法之一,就是使用软件自动生成训练数据。
众所周知,此类合成数据并不总是像手动创建的记录那么准确,但对于AI训练来说通常是适合的。
据IBM称,watsonx.ai将增加一个内置的合成数据生成工具。要使用该公司,企业就必须上传示例数据集,例如购买日志的集合,watson.ai可以分析这些日志并生成具有类似特征的综合记录。
让已经训练好的AI模型适应新的任务,这通常需要对其进行重新训练,而且这可能是一个资源密集型的过程。为了应对这一挑战,IBM为watsonx.ai配备了参数调整工具,该工具可以针对新任务优化神经网络,而无需重新训练。
开发人员通过参数调整创建第二个起到支持作用的神经网络来优化AI模型。第二个神经网络向AI模型提供如何执行给定任务的指令,当这些指令与用户的自然语言提示相结合的时候,AI就能够比其他方式更有效地执行手头上的任务。
IBM还详细介绍了有关于watsonx.data的增强,watsonx.data是watsonx产品套件的一个组件,旨在帮助企业管理他们的AI训练数据集。
据IBM称,该工具将增加对话界面,允许用户更轻松地可视化存储在watsonx.data中的信息,对其进行细化并查找特定记录。IBM还增加了一个经过优化以保存嵌入的矢量数据库,即AI模型用来存储其内部知识存储库的数学结构。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。