亚马逊网络服务公司(Amazon Web Services,缩写为AWS)近日提供了一套内部工具套件的详细信息,该套件在公司内部名为“MadPot”,主要用于检测网络攻击并已经成功阻止数千次的网络攻击。
MadPot 的起源可追溯至 2010 年代末。MadPot利用部署在 AWS 基础设施上的大量传感器收集的情报,可实时监控和分析潜在的威胁互动,以确保网络和客户的安全性和完整性。建立这项服务的目的有两个:发现和监控威胁活动并全力瓦解有可能造成危害的活动,以保护 AWS 客户和其他客户的安全。
据 AWS CISO 办公室主任 Mark Ryland 说,MadPot 已经发展成为一个由监控传感器和自动响应能力组成的复杂系统。据说这些传感器每天能观察到超过 1 亿次潜在的威胁交互和探测,其中约有 50 万次观察到的活动最终发展成可被归类为恶意的行为。
MadPot 对威胁情报数据进行摄取、关联和分析,以提供涉及互联网上发生的潜在有害活动的可行见解。MadPot服务还包括响应功能,可自动保护 AWS 网络免受已识别威胁的影响以及与一些基础设施被用于恶意活动的其他公司进行沟通。
任何服务或工具集好不好是由其结果而定的,而 MadPot 的结果在客观上非常棒。据 Ryland 称,MadPot 在识别和消除无数网络威胁方面发挥了重要作用。
其中的一个例子, MadPot 发现并分析了一个使用特定域发命令和控制指令的分布式拒绝服务僵尸网络。AWS表示,MadPot 勾勒出威胁、确定了服务器使用的 IP 地址并与相关托管实体协调迅速解除了威胁。MadPot 还发现了臭名昭著的“沙虫”威胁组织的活动并及时采取了缓解措施。
MadPot 的另一项成果是识别出“伏特台风”(Volt Typhoon),伏特台风是 5 月份首次出现的据称由某亚洲国家支持的威胁行为者。MadPot通过调查确定了与该组织活动相关的独特特征,为美国政府的网络安全咨询工作提供了帮助。
MadPot 在今年第一季度处理了来自互联网威胁传感器的 55 亿个信号和来自 AWS 主动网络探针的 15 亿个信号,成功阻止了 130 万次由僵尸驱动的分布式拒绝服务攻击。从 MadPot 收集到的数据(包括近 1,000 个指令控制僵尸网络主机)已分享给与相关主机提供商和域名注册商。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。