亚马逊网络服务公司(Amazon Web Services,缩写为AWS)近日提供了一套内部工具套件的详细信息,该套件在公司内部名为“MadPot”,主要用于检测网络攻击并已经成功阻止数千次的网络攻击。
MadPot 的起源可追溯至 2010 年代末。MadPot利用部署在 AWS 基础设施上的大量传感器收集的情报,可实时监控和分析潜在的威胁互动,以确保网络和客户的安全性和完整性。建立这项服务的目的有两个:发现和监控威胁活动并全力瓦解有可能造成危害的活动,以保护 AWS 客户和其他客户的安全。
据 AWS CISO 办公室主任 Mark Ryland 说,MadPot 已经发展成为一个由监控传感器和自动响应能力组成的复杂系统。据说这些传感器每天能观察到超过 1 亿次潜在的威胁交互和探测,其中约有 50 万次观察到的活动最终发展成可被归类为恶意的行为。
MadPot 对威胁情报数据进行摄取、关联和分析,以提供涉及互联网上发生的潜在有害活动的可行见解。MadPot服务还包括响应功能,可自动保护 AWS 网络免受已识别威胁的影响以及与一些基础设施被用于恶意活动的其他公司进行沟通。
任何服务或工具集好不好是由其结果而定的,而 MadPot 的结果在客观上非常棒。据 Ryland 称,MadPot 在识别和消除无数网络威胁方面发挥了重要作用。
其中的一个例子, MadPot 发现并分析了一个使用特定域发命令和控制指令的分布式拒绝服务僵尸网络。AWS表示,MadPot 勾勒出威胁、确定了服务器使用的 IP 地址并与相关托管实体协调迅速解除了威胁。MadPot 还发现了臭名昭著的“沙虫”威胁组织的活动并及时采取了缓解措施。
MadPot 的另一项成果是识别出“伏特台风”(Volt Typhoon),伏特台风是 5 月份首次出现的据称由某亚洲国家支持的威胁行为者。MadPot通过调查确定了与该组织活动相关的独特特征,为美国政府的网络安全咨询工作提供了帮助。
MadPot 在今年第一季度处理了来自互联网威胁传感器的 55 亿个信号和来自 AWS 主动网络探针的 15 亿个信号,成功阻止了 130 万次由僵尸驱动的分布式拒绝服务攻击。从 MadPot 收集到的数据(包括近 1,000 个指令控制僵尸网络主机)已分享给与相关主机提供商和域名注册商。
好文章,需要你的鼓励
这篇研究论文介绍了"Speechless",一种创新方法,可以在不使用实际语音数据的情况下训练语音指令模型,特别适用于越南语等低资源语言。研究团队通过将文本指令转换为语义表示,绕过了对高质量文本转语音(TTS)系统的依赖。该方法分三个阶段:首先训练量化器将语音转为语义标记;然后训练Speechless模型将文本转为这些标记;最后用生成的合成数据微调大型语言模型。实验表明,该方法在越南语ASR任务中表现出色,为低资源语言的语音助手开发提供了经济高效的解决方案。
《Transformer Copilot》论文提出了一种革命性的大语言模型微调框架,通过系统记录和利用模型训练过程中的"错误日志"来提升推理性能。研究团队受人类学习者记录和反思错误的启发,设计了一个"副驾驶"模型来辅助原始"驾驶员"模型,通过学习错误模式并在推理时校正输出。这一方法在12个基准测试上使模型性能提升高达34.5%,同时保持计算开销最小,展现了强大的可扩展性和可迁移性,为大语言模型的优化提供了全新思路。
德克萨斯大学Austin分校的研究团队提出了RIPT-VLA,一种创新的视觉-语言-动作模型后训练范式。该方法通过让AI模型与环境互动并仅接收简单的成功/失败反馈来学习,无需复杂的奖励函数或价值模型。实验证明,RIPT-VLA能显著提升现有模型性能,在轻量级QueST模型上平均提升21.2%,将大型OpenVLA-OFT模型推至97.5%的前所未有成功率。最令人惊叹的是,仅用一个示范样本,它就能将几乎不可用的模型在15次迭代内从4%提升至97%的成功率,展现出卓越的数据效率和适应能力。
北京大学与华为诺亚方舟实验室研究团队共同开发了TIME基准,这是首个专为评估大语言模型在真实世界场景中的时间推理能力而设计的多层级基准。该研究提出了三个层级的时间推理框架,包含11个细粒度任务,并构建了涵盖38,522个问答对的数据集,针对知识密集型信息、快速变化的事件动态和社交互动中的复杂时间依赖性三大现实挑战。实验结果表明,即使是先进模型在构建时间线和理解复杂时间关系方面仍面临显著挑战,而测试时扩展技术可明显提升时间逻辑推理能力。