麦肯锡公司合伙人Bhargs Srivathsan近日在新加坡召开的会议上表示,只要运用得当,生成式AI技术有望将云迁移工作量减少30%到50%。
Srivathsan认为,“目前的进度只能说才刚刚迈出第一步。随着大语言模型(LLM)的发展成熟,将工作负载迁移至公有云的时间表将不断缩短、迁移过程效率也能随之提升。”
她建议组织先使用大语言模型对系统内的基础设施进行摸底,解析其中的短板与优势,再在工作负载转移完成后继续应用AI工具查看迁移是否切实有效。
另外,还可以利用大语言模型完成更多相关工作,例如编写架构审查委员会指南等说明材料。
这位合伙人表示,尽管不少企业才刚刚开始考虑采用AI技术,但麦肯锡所投资的企业中已经有40%在更新其IT投入。
Srivathsan认为,生成式AI与云之间属于“共生”关系。
“必须承认,如果没有公有云的普及、就不可能把生成式AI真正带入生活。而与之对应,生成式AI也能切实加快公有云迁移、并帮助用户从原有公有云中解锁脱离。”
在Srivathsan看来,生成式AI的四大核心用例分别是内容生成、客户参与、创建合成数据、以及编写代码。当然,这里的编写代码并非从零开始完成软件开发。生成式AI的编码能力主要体现在接手员工离职后无人熟悉的遗留代码,或者是将原有代码转换为新的语言形式。
她还强调,之所以说公有云比尝试内部自建模型更加靠谱,是因为企业用户往往不具备充足的GPU储备。而且市面上现成商用模型的成本也比自行训练更加低廉。
Srivathsan指出,对于身处受监管行业、掌握大量专有数据或者担心知识产权遭到侵犯的用户,还可以设置相应的护栏。
在她看来,大语言模型在未来五、六年时间内将主要运行在超大规模基础设施环境当中,直到模型发展成熟。而且跟很多人想象中不同,其实生成式AI的实现并不一定压根那么夸张的算力储备,毕竟很少有用例会对延迟提出如此严苛的要求。
也就是说,除非是特斯拉上运行的自动驾驶功能、或者负责指挥制造车间实时运行的软件,否则确实没必要把硬件堆得太满。
另外,多数情况下也没必要使用定制或大规模模型。
这位麦肯锡合伙人评论称,“很多企业都以为自己需要买辆超级跑车来送披萨。当然用不着喽,真正符合需求的模型往往没那么复杂、也没那么大。举例来说,生成客服支持脚本肯定没必要动用650亿参数的大体量模型。”
但她同时给出建议,如果开发人员正在访问自己本不该接触到的非专有模型或数据,则务必要在组织内外之间添加API网关来建立起“实时警报”机制。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。