AI在医学领域的一种有趣应用,就是帮助预测某种诊疗方式在患者身上的潜在效果。以下三种,代表着AI医学应用中颇具前景的重要方向。
1. 识别糖尿病:AI算法可以通过分析II型糖尿病患者的声音来检测出病症,甚至能抢在患者或医生发现征兆之前。对于男性病患,糖尿病会导致其声音的强度和幅度出现微妙变化;而对女性病患,其音高也会发生细微差异。计算机预测的准确率在男性病患中约为86%,对于女性病患则约为89%。
这种检测方法的确切机制尚不完全明确,但研究人员怀疑早期糖尿病会影响患者声带的物理特性以及控制声带肌肉的能力,而这些变化可以通过录音被检测发现。尽管此项研究仍处于初步阶段,但如果进一步研究证实了这一判断,那么医生将拥有一种成本极低且无创的新方法帮助全球民众筛查这种常见疾病。
2. 预测死亡率:用于筛查早期肺癌的胸部CT扫描数据又有了新作用——可用于预测心血管疾病乃至总的“全因”死亡率。
这项工作是由范德比尔特大学和密苏里大学堪萨斯城分校的多学科团队共同完成的。团队首席研究员Kaiwen Xu解释称,这项研究能够帮助医生更好地确定哪些患者可以从身份调理或生活方式改变当中获益,抢在疾病发作之前改善健康状况。
目前,AI还无法充当紧急状况下预测短期死亡率的可靠工具。但已经有研究人员正在探索算法的伦理学意义,也许终有一天这些算法能够可靠地预测患者是否会在未来30到60天之内死亡,并由此改变急诊室、临终关怀中心等机构的护理思路。
最近一项研究表明,医生、护士和卫生管理人员已经逐渐意识到,AI技术在为高死亡风险人群提供适当护理方面有着巨大的应用前景。但他们强调,AI的意义是为了更好地提高工作效率、改善病患感受,而“绝不只是为了省钱”。
3. 推荐专家:ChatGPT和谷歌Bard等AI系统也许很快就将具备整理不同来源数据的能力,让患者们知道哪些医生和医院最擅长治疗自己的疾病、提升治疗成功几率。卫生政策专家Michael Millenson和Jennifer Goldsack表示,“病患可以快速找到芝加哥地区膝关节置换手术经验最丰富的外科医生,查看相应的感染率;在洛杉矶找到各知名医疗中心的腺癌患者生存数据;或者整理一份纽约市杰出心脏外科医生的推荐清单。”
当然,此类建议的优劣,具体还是要由患者的生存率、术后并发症几率等基础数据来评判。此外,并发症的发生率也不一定能反映医生的真实能力。水平更高的外科医生一般会负责治疗病情较重的患者,而这类人群本身就有着更高的并发症发生率。总之,在向病患提供诊疗建议时,仍须充分考虑到数据质量和来源背景。但整体来看,AI的介入代表着良好的发展方向,值得医生和医院认真关注、同时尽量为其贡献更加透明的诊疗数据资源。
正所谓“预测永远是困难的,特别是对长期未来的预测”。但随着AI工具在对患者健康结果进行长、短期预测方面的不断进步,也许患者和医生都能在新的机遇和挑战之下,获得过去难以想象的生命掌控之力。
好文章,需要你的鼓励
当前软件工程团队正在试验基于AI代理的编码工具和大语言模型,以提高开发速度和质量。然而,AI编码工具的效果很大程度上取决于使用方式。开发者需要提供结构化的问题描述、明确的执行要求和相关上下文,同时建立适当的防护机制。AI不仅能处理重复性任务,还能识别和评估替代方案,从被动助手演进为工作流程推进器。成功的关键在于将AI视为合作伙伴而非快捷工具,并将其整合到软件交付的全生命周期中。
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
Salesforce发布企业级AI智能体平台Agentforce 360,将AI智能体融入几乎所有应用中。该平台采用混合推理引擎Atlas,结合大语言模型的概率思维和业务规则的精确性,支持语音交互和深度集成。以Slack为主要界面,提供Agentforce Builder开发环境,能将非结构化文档转换为可查询记录。Salesforce内部已部署该系统,每周处理180万次对话,主动服务活动增长40%。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。