近日AWS表示,将推出一种新消费模式,主要针对那些希望为短期AI工作负载保留云托管GPU访问路径的企业。
Amazon Elastic Compute Cloud (EC2) Capacity Blocks for ML目前已经全面上市,这个模式让客户可以保留对位于Amazon EC2 UltraCluster中的“数百个”Nvidia最先进H100 Tensor Core GPU的访问权限,这些GPU主要面向高性能机器学习工作负载。
要访问EC2 Capacity Blocks,客户只需指定所需的集群大小、未来的开始日期和所需的持续时间,他们就能够确保有可靠地、可预测且不间断访问关键AI项目的GPU资源。
AWS表示,EC2 Capacity Blocks为客户解决了很多问题。如今,最强大的人工智能工作负载(例如训练大型语言模型)往往需要大量的计算能力,而Nvidia GPU被认为是用金钱可以买到的最好的硬件之一。然而,随着今年围绕生成式AI的热议,Nvidia的芯片突然出现供应短缺,没有足够的芯片供应给有需要的公司。
AWS表示,对于那些容量需求有波动的客户来说,GPU短缺尤其严重。由于他们不需要持续使用GPU,因此当他们确实需要这些资源时,可能会很难访问这些资源。为了解决这个问题,许多客户承诺购买较长时间的GPU容量,但在不使用时却将其闲置。EC2 Capacity Blocks为此类客户提供了一种更灵活的、更可预测的方式,可以在较短时间内采购GPU容量,从而为他们提供帮助。
AWS首席开发者布道师Channy Yun将EC2 Capacity Blocks预订比作预订酒店房间。他在一篇博客文章中解释说:“当你在预订酒店的时候,你可以指定想要入住房间的日期和入住时长,以及你想要的床的尺寸——例如大床或特大号床。EC2 Capacity Blocks预定也是如此,你可以选择需要GPU实例的日期、持续时间以及预留的大小(实例数量)。在预留开始日期,你就可以访问预留的EC2 Capacity Blocks并启动P5实例。”
AWS解释说,EC2 Capacity Blocks部署在EC2 UltraClusters中,并与Elastic Fabric Adapter Pt级网络互连,以确保低延迟和高吞吐量连接。正因为如此,它可以扩展到数百个GPU。客户可以提前八周预订1到64个实例的GPU集群,时间为1到14天。AWS表示,这种模式非常适合AI模型的训练和微调、短期实验运行、以及应对预期的需求激增例如推出新产品的时候。
AWS公司计算和网络副总裁David Brown表示:“借助Amazon EC2 Capacity Blocks,我们为企业和初创公司增加了一种新的方式,让他们能够以可预测的方式获取Nvidia GPU容量,用于构建、训练和部署他们的生成式AI应用。”
AWS客户现在可以使用AWS Management Console、Command Line Interface或者Software Development Kit来查找和预留GPU容量,从AWS美国东部(俄亥俄)区域开始,稍后将增加更多区域和本地区域。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。