今年9月底,ChatGPT新增了语音聊天和图像识别功能。相较于文本驱动,现在ChatGPT已经可以「看见」、「听到」和「说话」。
回顾AI的发展历程,我们见证过几次重大突破,比如2012年ImageNet大赛的图像识别,2016年AlphaGo与李世石的围棋对决,这些进展都为AI的普及应用铺设了道路。而ChatGPT的出现,真正让AI作为一个通用的产品,走入大众视野。
“ChatGPT的出现,为人工智能的发展起到了很好的引领和促进作用。”天津市人工智能学会副理事长、天津科技大学人工智能学院教授杨巨成在接受采访时这样说道。
生成式AI,还得过几关
其实在六七十年前,人工智能的概念就已经萌芽,到今天,ChatGPT等生成式AI产品的出现似乎是历史的必然。杨巨成深谙这一趋势,他看到的不仅仅是一个产品的火爆,而是整个人工智能发展的大势所趋。
生成式AI可以生成文本、图像、视频、音频等多种形式的内容,虽然公开可用的时间不久,但已经被广泛的应用和尝试。
麦肯锡最近的一份报告《2023年AI现状:生成式AI的突破之年》显示:79%的受访者都接触过生成式AI,其中22%的受访者表示,他们经常在自己的工作中使用生成式AI,有1/3的受访者表示,他们所在的企业已经在至少一个业务职能上定期使用生成式AI。
杨巨成认为,我们正处于人工智能的黄金发展期,它不仅是全球关注的焦点,更是多国的战略高地。“生成式AI推动了人工智能产业发展和技术创新,促进行业资源的整合与协作,以及人工智能技术的应用和普及。”
在AI的风口浪尖,除了无限机遇,也伴随着一系列的挑战。杨巨成对此有着深入的洞察,并提出了针对性的解决方案:
数据的瓶颈:优质的数据是生成式AI的核心,但现实中,数据的质量和数量往往难以满足需求。
解决之道:构建数据中心和数据平台,推动数据的共享和互联,确保数据的质、量双提升。
技术标准的缺失:由于技术的复杂性,行业内缺乏统一的标准和规范,限制了更广泛的应用。
解决之道:联合 政府、行业组织、高校和专业机构共同制定AI相关的技术标准与规范。目前国内外已经逐步制定了一些管理政策和标准,如欧盟的〈一般数据保护条例〉GDPR和我国的《生成式人工智能服务管理暂行办法》等。近期,中国等28国、欧盟签署首个全球性AI声明《布莱切利宣言》。
伦理挑战:随着AIGC的应用,伦理问题如隐私泄露、对人类工作的影响等逐渐浮现。
解决之道:建立明确的技术应用、道德伦理机制,确保技术在道德的框架内合理使用。
人才短缺:AI领域的人才缺口显著,特别是那些战略性科学家和具有实战经验的高级人才。
解决之道:重视人才的培养和引进,如开展有组织的科研,开设AI专业课程、校企产学研合作,培养出真正能够应对实际问题的AI人才。
此外,正如我们所见,AI的安全性已经成为今年的焦点问题。今年5月,被誉为“人工智能之父”的Geoffrey Hinton离开谷歌,他对AI的安全性提出了严重的担忧,站在狂热的人工智能风暴中心为科技界敲响了警钟。
生成式人工智能(AIGC),虽然能够高效生成内容,但也可能带来误导,产生不准确的内容,进而助长虚假信息的传播。更为严重的是,AI技术可能被用于伪造、抄袭,侵犯他人权益。甚至,当AI的智慧超越人类,我们是否还能掌控这一切?
安全始终是第一位的。杨巨成强调,我们应加强安全技术研发,建立完善的数据安全和隐私保护机制,并提高算法的透明度。
在此之上,要让AI更可靠,具有普适性,还需解决技术成本、数据采集、算法可操作性等一系列实际问题。
深入垂直行业,抓AIGC场景
可喜的是,着眼当下,生成式AI技术已经在多个行业逐步展现出了巨大的潜力。
金融业,一直以来都是由数据驱动的行业,也是最早拥抱前沿技术的行业。金融机构可以应用AIGC更精准地预测和防范风险,识别欺诈行为,为客户提供个性化服务等。金融,很有可能成为AIGC落地的“试验田”。
在零售业,零售商可以应用AIGC深入分析消费者的购买能力、产品需求,作为决策支持,增强管理效率和精准营销能力。
在制造业,制造商可以应用AIGC预测设备故障和生产问题来优化制造过程,减少生产成本,提升效率和产品质量,降低出错率。
在医疗业,医生可以应用AIGC实现疾病快速诊断、精准治疗、医药研发、疾病预测管理,以及疾病流行趋势预测等。
而最为直接、也是目前最先落地的应用场景,要数智能客服。智能客服可以实现自动问答、快速响应、精准服务等。杨巨成举例说,在某些电商平台用智能客服处理客户的问题和投诉,提供精准的服务,不仅能提升客户满意度,还减轻了员工的压力。
但鉴于当下百模大战的局势,企业如何选择最适合自己的AI大模型?杨巨成指出了五大考量因素:平台的稳定性、技术框架的支持、运营速度、安全性以及知识产权保护。
更进一步地,要推动生成式AI市场化,除了企业,还需要社会各方共同推动。企业自身要增强技术创新意识,加大资金和人才投入,重视商业转化,确保研发成果能够转化为实际的产业价值,业内校企产学研的合作需要进一步加强,政府层面也应加强引导,为企业提供金融、税收等政策支持。
对于生成式AI未来的发展趋势和前景,杨巨成认为,有四个方向值得关注。
一是个性化AI,满足用户个性化需求,如智能音箱、智能家居、智能助理、定制化的服务等。
二是自主AI,具有智慧性,可以适应复杂环境,并自主进行决策,如自动驾驶、无人机等。
三是联邦AI,可以实现AI算法在可信环境下的分布式训练,满足隐私保护的需求。
四是AI的交互与协作,不同人工智能系统需要交互与协作,比如不同的语音助手、不同的驾驶车辆之间的交互和协调。
最后,聊到AI领域最近让他印象深刻的应用场景,他说“虚拟数字人让我印象很深刻,它们可以代替真人做各种任务,如新闻播报、直播主持、教育培训、影视娱乐等。还可以定制各种个性化的服务,而且现在的虚拟人也越来越逼真,越来越智能,未来的应用会越来越广。”
好文章,需要你的鼓励
谷歌地图将集成Gemini人工智能技术,旨在将其升级为一个"全知型副驾驶"助手。这一整合将大幅提升地图服务的智能化水平,为用户提供更加个性化和全面的导航体验。通过AI技术的加持,谷歌地图有望在路线规划、地点推荐和实时信息服务等方面实现重大突破。
这项由圣母大学和IBM研究院联合开展的研究,开发出了名为DeepEvolve的AI科学助手系统,能够像人类科学家一样进行深度文献研究并将创新想法转化为可执行的算法程序。该系统突破了传统AI要么只能改进算法但缺乏创新、要么只能提出想法但无法实现的局限,在化学、生物学、数学等九个科学领域的测试中都实现了显著的算法性能提升,为AI辅助科学发现开辟了新的道路。
微软研究人员发布新的仿真环境来测试AI智能体,研究显示当前智能体模型容易受到操纵。该名为"Magentic Marketplace"的合成平台让客户智能体与商家智能体进行交互实验。测试包括GPT-4o、GPT-5和Gemini-2.5-Flash等模型,发现智能体在面临过多选择时效率下降,且在协作方面表现不佳。研究揭示了AI智能体在无监督环境下的性能问题。
卡内基梅隆大学研究团队通过3331次大规模实验,系统揭示了代码训练如何提升AI推理能力。研究发现,代码的结构特性比语义内容更重要,适当的抽象形式(如伪代码)可以达到与原始代码相同的效果。不同编程语言产生差异化影响:低抽象语言有利于数学推理,Python更适合自然语言任务。这些发现为AI训练数据的科学化设计提供了重要指导。