日前,红帽(Red Hat)发布 Red Hat Enterprise Linux(RHEL)9.3。RHEL 9.3 是红帽旗舰操作系统的重大更新。最新的RHEL 9.3版提供了大量新功能和改进。其中最吸引笔者的是开发者体验的增强、安全性的提高及运行容器扩展功能。
我们中的许多人仍然用 Linux 运行服务器,但最近 IDC Research 的预测显示,Linux 会越来越多地用来运行容器和云原生计算的启动平台。IDC 预测,到 2027 年,该软件市场将增长到 55.7 亿美元,复合年增长率(CAGR)将达 23.4%。
红帽希望 RHEL 9.3 成为该技术趋势的基础。红帽公司 RHEL 副总裁兼总经理 Gunnar Hellekson 表示,“最新的RHEL 9.3版在继续支持当前 IT 需求的同时,也为未来的创新创造了更顺畅的途径,无需全面改变技能、工具或工作流程。”
为了使 RHEL 9.3 更适合云计算,所有 RHEL 订阅现在都包括 Red Hat Insights。Insights是一套用于大规模开发和管理 Linux 平台的托管专家系统服务。Insights 可以提醒用户注意潜在的系统问题并帮助用户解决这些问题。Insights还可以帮助简化操作任务,例如构建标准化镜像、打系统补丁和优化资源。
至于容器的选择,红帽推荐用 Podman。Podman是一款用于部署、运行、构建和共享 Linux 容器的无守护进程工具。Podman 首次发布于2014年,而 RHEL 9.3 则与Podman 进行了深度整合。
例如,RHEL 9.3 包含预配置的 Ansible 角色和模块集,可简化特定的 Podman 系统操作。Podman 的 RHEL 系统角色现在也支持 Quadlet。Quadlet是一个简化使用 systemd 运行容器过程的工具。
除了容器方面的改进,RHEL 9.3 还针对开发人员推出了多项更新,包括:
· 更新的编程语言和工具:RHEL 9.3平台现在包含最新版本的流行编程语言和工具。其中值得注意为 Apache HTTP Server 2.4.57、Redis 7、GCC 13、Rust 1.71 和 LLVM 16,这些可为开发人员的项目提供最新资源。
· 增强的工具集和编译器:RHEL 9.3更新提供 GCC 13.1.1 编译器,其中包括大量错误修复和增强功能。Rust 1.71 解决了一个安全漏洞并引入了更高效的 Cargo 稀疏协议。LLVM 16 现在默认使用 C++ 17 构建版,增加了对新 CPU 扩展和优化指令集的支持。
· Go 1.20: 新版本 Go 包含多项改变,例如新的 crypto/ecdh 软件包、垃圾回收器的优化以及对配置文件引导优化的支持。
RHEL 9.3 自然还提供了多项安全更新。其中最重要的更新与容器和边缘计算有关,这一点没有人会感到意外。Keylime 提供了高度可扩展的远程启动验证和运行时完整性测量解决方案。用户可以通过Keylime 使用基于硬件的加密信任根节点监控远程节点。
所有这一切下面的核心 RHEL 依赖的内核版本为 5.14.0-362.8.1 的 RHEL 9.3 。内核版本包括对 perf 性能分析工具和崩溃工具的更新以及对精简配置逻辑系统角色的支持。
RHEL 9.3 还提供对 Linux 存储系统 Stratis 的全面支持。Stratis 将现有的 Linux 存储功能集成到一个更精简、更友好的用户界面,可以帮助简化存储管理并提高效率,使得存储配置和管理对新手和有经验的用户都很方便。
总的来说,RHEL 9.3 在为企业应用提供安全、稳定和开发人员友好的平台方面迈出了重要的一步,无论这些企业应用是在壁橱里的老式物理服务器上还是部署在云和边缘上。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。