如今企业在部署AI方案之前,首先需要解决一系列治理、合规与安全问题,而这必然会在技术、道德、社会和监管等各个层面带来多种复杂挑战。
IBM在今年早些时候推出了watsonx解决方案集,专注于满足企业的特殊需求。之后,IBM又推出watsonx Granite基础模型,希望进一步增强其AI安全储备。而即将在12月初全面上线的watsonx.governance,则专注于企业AI模型的管理与治理任务,希望补齐企业IT的最后一块拼图。
watsonx.governance
IBM的全新watsonx.governance为组织提供一套全面的工具包,用于管理风险、提高透明度并为遵守未来的AI相关法规做好准备。它允许企业建立自动化的AI治理流程、监控模型并采取纠正措施,最终提高整个体系的可见度。
IBM Watsonx.governance
IBM的watsonx.governance是IBM提供的一套新工具,能够在AI模型的管理与治理方面提供多种关键功能:
IBM Consulting也在扩展其战略专业知识,以帮助客户采用负责任的AI实践,包括推动模型治理、乃至更广泛组织治理的全面自动化。其中包括解决AI道德、组织文化、责任、训练、监管合规、风险管理和网络安全威胁等种种现实问题。
watsonx.governance产品将作为IBM watsonx AI与数据平台的一部分,与AI助手和数据存储方案等其他产品一道,帮助企业扩展并加速其AI计划。此外,IBM还为其开发的watsonx模型提供知识产权保护。
企业在部署生成式AI时往往面临着一系列重大挑战,具体涉及治理、合规和安全等层面。如果无法保障数据隐私和安全、保障AI训练中使用的敏感信息并防止数据泄露,技术落地将永远无从谈起。
道德和偏见问题也同样重要。由于AI模型会从训练数据当中继承偏见和倾向,因此可能导致不公平结果,特别是在招聘和执法等敏感领域。此外,不同司法管辖区中法规条款的不断变化又进一步增加了复杂性,要求企业随时关注专业知识并遵守新的法律标准。
此外,不少AI模型还缺乏透明度和可解释性,这就拉高了理解和证明AI驱动决策合理性的门槛,也让产生失误或危害之后的责任划分变得愈发复杂。
新的watsonx.governance以及IBM最近发布的watsonx Granite基础模型解决了上述问题,并帮助组织应对AI带来的挑战,确保技术实践始终负责任且符合道德。
而完整的watsonx产品组合将帮助企业利用AI进行创新,同时保持自身AI规划的透明度、问责制与控制力。
Watsonx
IBM并不是唯一一家挺身而出,愿意帮助企业应对AI安全与负责任部署挑战的厂商。普华永道、德勤、毕马威和埃森哲等传统企业咨询公司都提供一系列服务,希望帮助企业解决这方面问题。谷歌和微软等领先的AI技术提供商也分别推出了针对性的解决方案。
而凭借广泛的方法学基础与深厚的技术积累,IBM几乎是唯一一位有能力全方位解决生成式AI入驻企业时各种现实问题的选手。Watsonx也重塑了我们对于IBM和AI的看法:蓝色巨人正不断通过实用工具补充自己的先进技术解决方案,希望将AI安全可靠地交付给企业客户,并借此积累起强大的商业声誉。IBM对其watsonx路线图的关注和推进速度值得赞赏,我们也将随时关注相关产品在市场上的实际表现。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
香港理工大学联合多所高校开发的Mol-R1框架,首次实现了AI在分子发现中的透明推理。该系统通过PRID方法学习专家推理模式,配合MoIA迭代训练策略,不仅能准确生成分子结构,还能展示完整思考过程。相比现有模型,Mol-R1推理更简洁高效,为药物研发等领域的AI应用提供了重要的安全保障。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
蚂蚁集团AWorld团队发表突破性研究,创建动态多智能体协作系统解决AI稳定性难题。研究灵感来源于船舶导航,通过执行智能体和守护智能体的协作机制,在GAIA测试中准确率达67.89%,稳定性提升17.3%,荣登开源项目排行榜第一名。该系统为构建可靠智能系统开辟新路径,具有广阔应用前景。