今天 ,AWS在AWS re:Invent大会推出两款新一代自研芯片,用于通用云计算和高效AI训练,分别是Graviton4 和 Trainium2。
AWS使用基于Arm的Graviton系列处理器为客户提供高性能并降低成本,以处理Amazon Elastic Compute Cloud(EC2)中的各种云计算工作负载。据Amazon称,与当前的Graviton3这一代处理器相比,Graviton4的计算能力提高了30%,核心数量增加了50%,内存带宽增加了75%。
AWS计算和网络副总裁David Brown表示:“Graviton4标志着我们在短短五年内推出的第四代芯片,是我们为各种工作负载打造的最强大的、最节能的芯片。芯片支撑着每个客户工作负载,这是AWS创新的一个关键领域。”
Amazon自2018年以来一直在使用Graviton1构建自己的定制芯片,为A1 EC2实例提供动力。每一代Graviton都带来了更高的性能、效率和更低的成本。2021年,Brown曾表示,Graviton的上市为AWS生态系统带来了重大增长,因为客户看到工作负载立即就得到了改善。
截至目前,AWS在全球提供超过150种不同的、支持Graviton的Amazon EC2实例,并且已经部署了超过200万个Graviton处理器。
AWS最新的内存优化型Amazon EC2 R8g实例将支持Graviton4处理器,让客户能够大规模改进高性能数据库、内存缓存和大数据分析工作负载的运行。R8g实例将提供比当前R7g实例多3倍的大容量虚拟CPU和3倍的内存。Amazon表示,新的R8g实例目前已推出预览版,计划在未来几个月内全面上市。
Trainium2:专为云端AI训练设计的下一代芯片
随着当今生成式AI应用背后的AI基础模型和大型语言模型变得越来越大,它们需要处理大量数据集,意味着训练模型的时间和成本也在不断增加。那些最大的、最先进的模型可以扩展到数千亿到数万亿个数据点,可以生成文本、图像、音频、视频和软件代码。
今天,AWS发布了Trainium2,一款专门用于训练FM和LLM的高性能芯片,具有多达数万亿个参数,训练性能是第一代芯片的4倍,内存容量是其3倍。AWS还表示,该芯片的能效比第一代提高了2倍。
Brown表示:“随着人们对生成式AI兴趣日益高涨,Trainium2将帮助客户以更低的成本和更高的能源效率更快速地训练他们的机器学习模型。”
Trainium芯片充当了高性能人工智能和机器学习工作负载的深度学习算法AI加速器,还针对训练AI应用中使用的自然语言处理、计算机视觉和推荐模型进行了优化,例如文本摘要、代码生成、问答、图像和视频生成。
Trainium2将在新的Amazon EC2 Trn2实例中提供,其中单个实例包含16个Trainium2芯片。客户将能够在下一代EC2 UltraCluster中将这些实例扩展到多达10000个Trianum2芯片,并与AWS Elastic Fabric Adapter的Pb级网络互连,能够提供高达65 exaflops的计算能力。Amazon表示,按照这样的规模,客户将能够在一周内而不是几个月培训多达3000亿个参数的大型语言模型。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。