2023年12月底,一起涉及理想L7的重大交通事故在广东省清远市发生,随后,理想汽车公布了行驶数据和行车记录仪视频,带来强烈反响。理想公开汽车行驶数据和行和记录仪视频,是否涉嫌侵犯驾驶员隐私?智能网联汽车事故分析过程中可能引发哪些数据合规问题?至顶网就此采访了望衡律师事务所创始合伙人韩婷律师,她认为,理想汽车公布的行驶数据和视频并非隐私范畴,但她呼吁,相关部门应加快出台智能网联汽车黑匣子相关法规和标准。
图:望衡律师事务所创始合伙人韩婷律师
至顶网:事件中涉及哪些个人信息/数据?是否属于隐私?
韩婷:此次“理想L7清远车祸”发生后,理想发布了两条事件相关微博。其中第一条微博中公布了车速(178km/h和96km/h)和驾驶行为(采取制动措施);第二条微博中公布了行车记录仪视频,该视频中无声音,亦未显示驾驶员的行踪轨迹及精准定位信息。我们认为,以上信息均属于驾驶员的个人信息,同时也构成数据,但不属于隐私,因为该视频中公开的内容并未与驾驶员的私密活动或私密信息相关。
至顶网: 理想收集和公布上述个人信息/数据,是否有法律依据?
韩婷:理想在公开报道中提到车速和驾驶行为数据源自车辆后台,所以这些数据应当是理想收集的。车企是否有权对这类数据进行处理,即收集、使用、公开数据,取决于车企与用户之间是否有协议。我们目前并不知道用户是否签署过包含同意数据处理的协议,所以无法对理想收集和公开数据的行为的合法性做出判断。
关于行车记录仪视频,我们推测有可能不是理想收集的,因为行车记录仪通常是不联网的,而且如果收集行车记录仪视频对车企而言存储成本会非常高,法律风险也较高。至于理想自何处获得行车记录仪视频,有待进一步了解。
至顶网: 发生事故后,数据到底应该由谁处理?
韩婷:这个问题比较复杂,不仅涉及设备和技术问题,更涉及权属和权利问题。
通常发生交通事故后,应当由交通管理部门处理数据并进行事故责任认定。目前我国关于智能网联汽车事故相关数据处理问题还没有针对性特别强的细致的法律规定。我们相信,随着法规和标准的进一步细化,尤其是未来随着Event Data Recorder (“EDR”或“黑匣子”)的应用,这一问题的答案将逐步明晰。
事故所涉的L7属于具有辅助驾驶功能的智能网联汽车,可实现L2级别即“有条件自动驾驶”。对具有辅助驾驶甚至未来具备更高级别自动驾驶功能的智能网联汽车而言,事故分析很大程度上将依赖于黑匣子。
我国目前还没有车内黑匣子的强制性规定,但2021年4月7日,工业和信息化部发布了《智能网联汽车生产企业及产品准入管理指南(试行)》征求意见稿。该征求意见稿第八条规定:“智能网联汽车产品应具有事件数据记录和自动驾驶数据存储功能,采集和记录的数据至少应包括驾驶自动化系统运行状态、驾驶员状态、行车环境信息、车辆控制信息等,并应满足相关性能和安全性要求,保证车辆发生事故时设备记录数据的完整性。”通过该条表述可知,自动驾驶汽车的数据记录、存储功能应当是由车内“设备”完成的,而并非通过网络将数据上传到云端系统或车企。简言之,若该指南正式颁布,则每辆智能网联汽车车内都应安装一部黑匣子。
《汽车数据安全管理若干规定(试行)》倡导车内处理原则,即除非确有必要不向车外提供数据。据此,我们可以预见,智能网联汽车在安装了黑匣子后,传回车企的数据类型有可能会受到法规的进一步限制。
除了数据收集外,还有一系列与黑匣子相关的问题:黑匣子应当受谁控制,车企是否有权掌握黑匣子的密码或阅读权限;在何种条件下由谁打开黑匣子,用户同意是否可以缺省;交管部门或第三方机构若不具备处理数据的环境或能力,可否由车企做事故分析;车企所得的分析结论若被用户质疑,该如何解决,等等。期待未来更有针对性的法规和标准出台,解决上述问题。
好文章,需要你的鼓励
这项研究针对现代文档检索系统中的关键缺陷:独立处理文档片段导致丢失上下文信息。研究团队开发了ConTEB基准测试来评估模型利用文档级上下文的能力,并提出了InSeNT方法,结合后期分块和创新的对比学习策略。实验表明,上下文感知嵌入显著提升检索性能,尤其在处理非自包含文本片段时,同时保持计算效率,对分块策略更具鲁棒性,并且在语料库规模扩大时表现更佳。这一研究为更智能的文档检索系统铺平了道路。
这项由布朗大学和Cohere实验室研究者联合进行的研究全面分析了大型语言模型(LLM)安全研究中的语言不平等现象。通过系统回顾近300篇2020-2024年间的安全相关论文,研究发现LLM安全研究严重偏向英语,即使中文这样的高资源语言也仅获得英语十分之一的研究关注,且这一差距正在扩大。研究还揭示非英语语言很少作为独立研究对象,且英语安全研究常忽略语言覆盖文档化。为解决这一问题,研究者提出了三个未来方向:开发文化敏感的评估基准、创建多语言安全训练数据,以及深入理解跨语言安全泛化挑战。
这项研究提出了ChARM,一种创新的角色扮演AI奖励建模框架,通过行为自适应边界和自我进化策略大幅提升AI角色的真实性和一致性。研究团队创建了包含1,108个角色的RoleplayPref数据集,实验表明ChARM比传统模型提高了13%的偏好排名准确率,应用于DPO技术后在多项基准测试中达到了领先水平。这一突破将为娱乐、教育和心理健康支持等领域带来更加自然、个性化的AI互动体验。
这篇研究重新审视了循环神经网络中的双线性状态转换机制,挑战了传统观点。高通AI研究团队证明,隐藏单元不仅是被动记忆存储,更是网络计算的积极参与者。研究建立了一个从实数对角线到完全双线性的模型层级,对应不同复杂度的状态跟踪任务。实验表明,双线性RNN能有效学习各种状态跟踪任务,甚至只需极少量训练数据。研究还发现,纯乘法交互比加法交互更有利于状态跟踪,为循环网络设计提供了新视角。