作者: JFrog大中华区总经理董任远
随着AI应用的规模不断扩大以及大语言模型(LLM)的商品化,开发者越来越多地承担起将人工智能(AI)和机器学习(ML)模型与软件更新或新软件一起打包的任务。虽然AI/ML在创新方面大有可为,但同时也加剧了人们的担忧,因为许多开发人员没有足够的带宽来安全地管理其开发。
安全漏洞可能无意中将恶意代码引入 AI/ML 模型,从而使威胁行为者有了可乘之机,引诱开发者使用开放源码软件模型变种,渗透企业网络并对组织造成进一步损害。甚至还有开发者越来越多地使用生成式AI来创建代码,却不知道自己生成的代码是否受到威胁的情况,这同样会导致安全威胁长期存在。因此,必须自一开始就对代码进行适当的审查,以主动降低软件供应链受到损害的威胁。
由于威胁行为者会想方设法利用AI/ML 模型,威胁将持续困扰着安全团队。随着安全威胁的数量不断增加,规模不断扩大,在2024 年开发者将更加重视安全性,并部署必要的保障措施,以确保其企业的弹性。
开发者的角色演变
对于开发者来说,在软件生命周期初始阶段就考虑到安全性是一种相对较新的做法。通常情况下,二进制级别的安全性被认为只是“锦上添花”的存在。而威胁行为者会利用这种疏忽,寻找将ML模型武器化以对抗组织的途径,找出将恶意逻辑注入最终二进制文件的方法。
同样,许多开发者由于没有接受过必要的培训,无法在开发的初始阶段就将安全性嵌入到代码中。由此造成的主要影响在于,由AI生成并在开源存储库上训练的代码通常没有经过适当的漏洞审查,且缺乏整体安全控制来保护用户及其组织免受利用。尽管这可能会节省工作职能中的时间和其他资源,但开发者却在不知不觉中将其组织暴露在众多风险之下。一旦这些代码在AI/ML 模型中实现,这些漏洞利用就会造成更严重的影响,而且有可能不会被发现。
随着AI的广泛应用,传统的开发者角色已不足以应对不断变化的安全环境。步入 2024 年,开发者也必须成为安全专业人员,从而巩固 DevOps 和 DevSecOps 不能再被视为独立工作职能的理念。通过从一开始就构建安全解决方案,开发者不仅能确保关键工作流的最高效率,还能增强对组织安全性的信心。
通过“左移”,自始就安装保障措施
如果安全团队要在新的一年里对威胁保持警惕,那么 ML 模型的安全性就必须持续发展演进。然而,随着AI的大规模应用,团队不能在软件生命周期的后期才确定必要的安全措施,因为到那时,可能就真的为时已晚了。
组织内部负责安全方面的高层必须以“左移”的方式进行软件开发。通过坚持此方法,即能够自一开始就确保软件开发生命周期中所有组成部分的安全,并从整体上改善组织的安全情况。当应用到AI/ML时,左移不仅能确认外部AI/ML系统中开发的代码是否安全,还能确保正在开发的AI/ML模型不含恶意代码,且符合许可要求。
展望 2024 年及以后,围绕AI和 ML 模型的威胁将持续存在。如果团队要持续抵御来自威胁行为者的攻击并保护组织及其客户,确保自软件生命周期之始就考虑到安全性将是至关重要的。
好文章,需要你的鼓励
TechCrunch Disrupt 2025 AI舞台将汇聚塑造科技未来的领军人物,顶尖风投将揭示在快速变化的AI领域获得融资的关键。来自Apptronik、ElevenLabs、Hugging Face、Runway等创新企业的领导者将分享前沿洞见,探讨AI如何重塑创意过程、改变物理世界、变革国防安全和重新定义人际关系。10月27-29日,五大主题舞台将在旧金山呈现科技创新的未来图景。
西班牙研究团队提出了一种创新的AI自我纠错方法SSC,让人工智能学会识别和修正规则中的漏洞。当AI发现自己在钻空子获得高分时,它会反思规则的合理性并主动改进。实验显示这种方法将AI的"钻空子"行为从50-70%降低到3%以下,同时提升了回答质量。这项技术有望让AI从被动执行指令转变为能够质疑和改进指令的智能协作伙伴。
英超联赛与微软达成五年战略合作伙伴关系,推出AI驱动的Premier League Companion服务,为全球球迷提供个性化体验。该服务利用Azure OpenAI技术,整合30多个赛季的统计数据、30万篇文章和9000个视频,帮助球迷发现和了解更多内容。未来还将为Fantasy Premier League引入个人助理经理功能,并通过Azure AI优化比赛直播体验和赛后分析。
这篇文章详细解析了Long、Shelhamer和Darrell在2015年CVPR会议上发表的开创性研究"全卷积网络用于语义分割"。文章以通俗易懂的方式,将这项复杂的技术比作艺术家的绘画过程,解释了如何让计算机不仅识别图像中有什么物体,还能精确标出每个物体的位置和边界。研究团队通过将传统分类网络改造为全卷积形式,并巧妙运用上采样和跳跃连接技术,实现了高效准确的像素级图像理解。这一突破为自动驾驶、医学影像和增强现实等领域带来了革命性变化,奠定了现代计算机视觉的重要基础。